Метод обратной матрицы пример. Линейные уравнения

(иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ . Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^{-1}$.
  3. Используя равенство $X=A^{-1}\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ - матрица системы, $B$ - матрица свободных членов, $X$ - матрица неизвестных. Пусть матрица $A^{-1}$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^{-1}$ слева:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B.$$

Так как $A^{-1}\cdot A=E$ ($E$ - единичная матрица), то записанное выше равенство станет таким:

$$E\cdot X=A^{-1}\cdot B.$$

Так как $E\cdot X=X$, то:

$$X=A^{-1}\cdot B.$$

Пример №1

Решить СЛАУ $ \left \{ \begin{aligned} & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end{aligned} \right.$ с помощью обратной матрицы.

$$ A=\left(\begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right);\; B=\left(\begin{array} {c} 29\\ -11 \end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \end{array}\right). $$

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^{-1}$. В примере №2

$$ A^{-1}=-\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$. Затем выполним умножение матриц

$$ \left(\begin{array} {c} x_1\\ x_2 \end{array}\right)= -\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right)\cdot \left(\begin{array} {c} 29\\ -11 \end{array}\right)=\\ =-\frac{1}{103}\cdot \left(\begin{array} {c} 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end{array}\right)= -\frac{1}{103}\cdot \left(\begin{array} {c} 309\\ -206 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right). $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Ответ : $x_1=-3$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end{aligned}\right.$ методом обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

$$ A=\left(\begin{array} {ccc} 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end{array}\right);\; B=\left(\begin{array} {c} -1\\0\\6\end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right). $$

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^{-1}$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^{-1}$:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)= \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)\cdot \left(\begin{array} {c} -1\\0\\6\end{array}\right)=\\ =\frac{1}{26}\cdot \left(\begin{array} {c} 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end{array}\right)=\frac{1}{26}\cdot \left(\begin{array} {c} 0\\-104\\234\end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right) $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения.

Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

Матричный метод решения состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными:

Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной системы линейных алгебраических уравнений .

Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Матричный метод позволяет находить решения СЛАУ (система линейных алгебраических уравнений) любой сложности. Весь процесс решения СЛАУ сводится к двум основным действиям:

Определение обратной матрицы на основании главной матрицы:

Умножение полученной обратной матрицы на вектор-столбец решений.

Допустим, дано СЛАУ следующего вида:

\[\left\{\begin{matrix} 5x_1 + 2x_2 & = & 7 \\ 2x_1 + x_2 & = & 9 \end{matrix}\right.\]

Начнем решение данного уравнения с выписывания матрицы системы:

Матрица правой части:

Определим обратную матрицу. Найти матрицу 2-го порядка можно следующим образом: 1 - сама матрица должна быть невырожденной; 2 - ее элементы, которые находятся на главной диагонали, меняем местами, а у элементов побочной диагонали выполняем смену знака на противоположный, после чего выполняем деление полученных элементов на определитель матрицы. Получим:

\[\begin{pmatrix} 7 \\ 9 \end{pmatrix}=\begin{pmatrix} -11 \\ 31 \end{pmatrix}\Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =\begin{pmatrix} -11 \\ 31 \end{pmatrix} \]

2 матрицы считаются равными, если равны их соответствующие элементы. В итоге имеем следующий ответ решения СЛАУ:

Где можно решить систему уравнений матричным методом онлайн?

Решить систему уравнений вы можете на нашем сайте . Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте.



 

Возможно, будет полезно почитать: