Электробезопасность меры защиты от поражения электрическим током. Основные меры и средства защиты от поражения электрическим током

Организационно-технические меры защиты. Согласно требованиям нормативных документов безопасность электроустановок обеспечивается следующими основными мерами:

  • недоступность токоведущих частей;
  • надлежащая, а в отдельных случаях повышенная (двойная) изоляция;
  • заземление или зануление корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  • надежное и быстродействующее автоматическое защитное отключение;
  • применение пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  • защитное разделение цепей;
  • блокировка, предупредительная сигнализация, надписи и плакаты;
  • применение защитных средств и приспособлений;
  • проведение планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;
  • проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

Электробезопасность на предприятиях необходимо обеспечивать инженерно-техническими средствами отдельно или в сочетании друг с другом. К этим средствам относят:

  • защитное заземление;
  • зануление;
  • выравнивание потенциалов;
  • малое напряжение;
  • электрическое разделение сетей;
  • защитное отключение;
  • изоляцию токоведущих частей;
  • обеспечение ориентации в электроустановках;
  • недоступность к токоведущим частям;
  • блокировку;
  • знаки безопасности.

Рис. 14.4. Явления при отекании тока в грунт: а - растекание тока в грунте; б - напряжение прикосновения; в - напряжение шага

Инженерно-технические способы и средства защиты, обеспечивающие электробезопасность, следует использовать с учетом:

  • номинального напряжения, рода и частоты тока электроустановки;
  • способа электроснабжения (от стационарной сети; автономного источника питания электроэнергией);
  • режима нейтрали нулевой точки источника питания электроэнергией (заземленная, изолированная нейтраль);
  • вида исполнения (стационарные, передвижные, переносные);
  • характеристики помещений по степени опасности поражения электрическим током;
  • возможности снятия напряжения с токоведущих частей, на которых или вблизи которых должна быть выполнена работа;
  • характера возможного прикосновения человека к элементам цепи тока (однофазное или двухфазное прикосновение, прикосновения, повышающие вероятность электропоражения. Электрическое разделение сети изолирует электроприемники от

общей сети, тем самым предотвращает влияние на них возникающих в сети токов утечки, емкостных проводимостей, замыканий на землю, последствий повреждения изоляции.

Состояние изоляции токоведущих частей в значительной мере определяет степень безопасности эксплуатации электроустановок.

Состояние изоляции электропроводов характеризуют тремя параметрами: электрической прочностью, электрическим сопротивлением и диэлектрическими потерями.

Электрическую прочность изоляции определяют испытанием на пробой повышенным напряжением, электрическое сопротивление - измерением, а диэлектрические потери - специальными исследованиями.

По правилам устройства электроустановок, допустимое сопротивление изоляции между фазными проводами и землей, а также между проводами разных фаз составляет не менее 0,5 МОм (500 000 Ом).

Контроль за состоянием изоляции электропроводов проводят не реже 1 раза в 3 года; профилактические испытания изоляции осуществляют в сроки, установленные ответственным за электрохозяйство на предприятии.

По исполнении изоляция бывает рабочая, дополнительная, двойная и усиленная. Рабочая изоляция токоведущих частей электроустановки обеспечивает защиту от поражения электрическим током. Изоляцию, применяемую дополнительно к рабочей, называют дополнительной электрической изоляцией. Сочетание рабочей и дополнительной изоляции называют двойной изоляцией. Например, в переносных лампах и ручном электроинструменте применяют двойную изоляцию , состоящую из рабочей изоляции токоведущих частей и дополнительной в виде корпуса, изготовленного из пластмассы, армированной для жесткости.

Усиленная изоляция представляет собой улучшенную рабочую изоляцию, которая обеспечивает такую же степень защиты от поражения электрическим током, как и двойная изоляция.

Нулевым защитным проводником в электроустановках является проводник, соединяющий зануляемые металлические конструктивные части оборудования с глухозаземленной нейтральной точкой источника тока.

Нулевой рабочий проводник также соединен с глухозаземленной нейтральной точкой источника тока, но предназначен для питания током электроприемников, т.е. он является частью цепи рабочего тока и по нему проходит рабочий ток.

Нулевой рабочий проводник должен иметь изоляцию, равноценную изоляции фазных проводников; сечение его должно быть рассчитано, как для фазных проводников, на длительное прохождение рабочего тока.

Нулевой рабочий проводник разрешается использовать одновременно и как нулевой защитный (за исключением приемников однофазного и постоянного тока). В этом случае нулевой рабочий проводник должен удовлетворять требованиям, предъявляемым к нулевым рабочим и защитным проводникам.

В нулевом рабочем проводнике, если его не используют одновременно как нулевой защитный, допускается ставить предохранители.

Ориентацию в электроустановках обеспечивают отличительной окраской. На основании требований ПУЭ электропроводка должна обеспечивать возможность легко распознавать проводники по всей длине сети. Голубой цвет используют для обозначения нулевого рабочего проводника; двухцветная комбинация зелено-желтого цвета - для обозначения нулевого защитного проводника; двухцветная комбинация зелено-желтого цвета по всей длине с голубыми метками на концах линии, которые наносят при монтаже, - для обозначения совмещенного нулевого рабочего и нулевого защитного проводников; черный, коричневый, красный, фиолетовый, серый, розовый, белый, оранжевый, бирюзовый цвета применяют для обозначения фазных проводников.

Указанная расцветка проводников (жил кабеля) соответствует международным стандартам и введена, чтобы предотвратить ошибочное подключение к корпусу электроприемника фазного проводника вместо нулевого защитного.

Недоступность токоведущих частей электроустановок обеспечивают, ограждая их и распологая их на недоступной высоте.

Ограждения выполняют прочными, негорючими, из сплошных металлических листов или сеток с ячейками размером не более 25x25 см. Возможны смешанные ограждения из сетки и сплошного листа. Распределительные щиты, щиты управления, релейные щиты, пульты должны иметь ограждения высотой не менее 1,7 м на расстоянии 10 см от токоведущих частей. Наименьшая высота расположения токопроводов в производственных помещениях над уровнем пола или площадки обслуживания должна быть не менее 3,5 м.

Провода воздушных линий электропередачи на территории предприятий и в населенной местности должны располагаться на недосягаемой высоте - от 6 м и выше.

Во многих электроустановках недоступность токоведущих частей обеспечивают, применяя блокировки различного вида. Блокировка представляет собой автоматическое устройство, с помощью которого заграждается путь в опасную зону электроустановки или становится невозможным выполнение неправильных и опасных для жизни действий по переключению коммутационной аппаратуры. Например, применяют электромагнитную блокировку между разъединителями и выключателями. Она устраняет возможность отключения разъединителя при наличии токов нагрузки в отключаемой цепи. Отсутствие такой блокировки может стать причиной образования электрической дуги при резком отключении рубильника. Воздействие электрической дуги на организм человека, как правило, приводит к летальному исходу.

Для предупреждения об опасности служат предупредительные плакаты. В соответствии с назначением их подразделяют на четыре группы: предостерегающие, запрещающие, разрешающие и напоминающие.

Стационарные предостерегающие плакаты укрепляют на оборудовании. Переносные предостерегающие плакаты применяют во время ремонтных работ и испытаний. Переносные запрещающие плакаты вывешивают также при ремонтах. Переносные разрешающие плакаты выполняют в виде круга на зеленом фоне.

Технические средства защиты. К техническим средствам защиты относятся: двойная изоляция, заземление, зануление и др.

Двойная изоляция. Двойная изоляция заключается в сочетании в одном электроприемнике двух независимых одна от другой ступеней изоляции. (Например, покрытие корпуса электрооборудования, вы- полненого из полимерных материалов, слоем изоляционного материала - краской, пленкой, лаком, эмалью и т.п.)

Применять двойную изоляцию наиболее рационально, когда в дополнение к рабочей электрической изоляции токоведущих частей корпус электроприемника изготавливают из изолирующего материала (пластмасса, стекловолокно).

Защитное заземление. Это преднамеренное электрическое соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Принцип действия защитного заземления - понизить до безопасных значений напряжение прикосновения и шага, обусловленных замыканием на корпус. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшение сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают выносные и контурные заземляющие устройства.

Выносные заземлители располагают на некотором расстоянии от оборудования. При этом заземленные корпуса электроустановок находятся на земле с нулевым потенциалом, а человек, касаясь корпуса, оказывается под полным напряжением заземлителя.

Контурные заземлители располагают по контуру вокруг оборудования в непосредственной близости, поэтому оборудование находится в зоне растекания тока. В этом случае при замыкании на корпус потенциал грунта на территории электроустановки (например, подстанции) приобретает значения, близкие к потенциалу заземлителя и заземленного электрооборудования, и напряжение прикосновения снижается.

Зануление. Чтобы предотвратить электротравматизм при эксплуатации электрооборудования, конструктивные нетоковедущие металлические части которого оказались под напряжением вследствие замыкания тока на корпус, а также при других аварийных режимах сети, применяют зануление.

Физическая сущность зануления заключается в возникновении тока короткого замыкания между нулевым проводом и поврежденной фазой. Ток короткого замыкания может достигать сотен ампер - в результате плавкая вставка расплавляется или отключается тепловое реле и система обесточивается.

Основное требование безопасности к занулению заключается в уменьшении длительности отключения замыкания - оно должно быть не более долей секунды.

Так как время срабатывания плавких вставок предохранителей и тепловых расцепителей автоматов обратно пропорционально силе тока, то малое время срабатывания возможно при большой силе тока. Каждый отключающий аппарат имеет свою заводскую токовременную характеристику. Так, предохранитель срабатывает за 0,1 с, если ток короткого замыкания превысит его уставку (значение входной величины тока) в 10 раз и за 0,2 с - если в 3 раза. Время отключения предохранителя резко возрастает до 9... 10 с при небольшой силе тока короткого замыкания (в 1,3 раза). По условиям безопасности такая система зануления недопустима.

Для надежного и быстрого отключения электроустановки, находящейся в аварийном состоянии, необходимо, чтобы ток короткого замыкания превосходил ток уставки отключающего аппарата.

Заземление нейтрали в сети до 1000 В снижает напряжение зануленных корпусов электрооборудования и нулевого защитного проводника относительно земли до малого значения при замыкании фазы на землю. Повторное заземление нулевого защитного проводника практически не влияет на отключающую способность схемы зануления.Однако при отсутствии повторного заземления нулевого защитного проводника возникает опасность для людей, прикасающихся к зануленному оборудованию в период замыкания фазы на корпус. Кроме того, в случае обрыва нулевого защитного проводника эта опасность повышается, поскольку напряжение относительно земли других подключенных в этот участок сети зануленных корпусов электродвигателей может достигать фазного напряжения. Повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, но не может устранить ее полностью.

Опасность поражения человека током возможна в следующих случаях:

  • при замыкании фазы на корпус электрооборудования;
  • при сопротивлении изоляции фаз относительно земли ниже определенного предела, что обусловлено повреждением изоляции, замыканием фазы на землю и пр.;
  • при более высоком напряжении в сети (в результате замыкания в трансформаторе между обмотками высшего и низшего напряжений, замыкания между проводами линий разных напряжений и пр.);
  • при прикосновении человека к токоведущей части, находящейся под напряжением и т.п.

Защитное отключение должно обеспечить автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, не допустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Защитное отключение рекомендуется в качестве основной или дополнительной меры защиты, если безопасность нельзя обеспечить при заземлении или занулении, либо если заземление или зануление трудно выполнимо, либо нецелесообразно по экономическим соображениям. Устройства (аппараты) для защитного отключения в отношении надежности действия должны удовлетворять специальным техническим требованиям.

Защита от статического электричества. Все тела по электрическим свойствам подразделяют на проводники и изоляторы (диэлектрики). Если проводники способны проводить ток, то диэлектрики этой способностью не обладают. Поэтому на веществах и материалах, имеющих удельное объемное электрическое сопротивление более 10 5 Ом м (диэлектрик), при трении, дроблении, интенсивном перемешивании происходит перераспределение электронов с образованием на поверхностях соприкосновения двойного электрического тока, что является непосредственным источником возникновения статического электричества.

Искровые разряды статического электричества могут вызвать взрыв и пожар. Особенно большую опасность представляют разряды статического электричества, образующиеся при сливе и наливе легковоспламеняющихся и горючих жидкостей свободно падающей струей.

В производственных условиях накопление зарядов статического электричества может происходить на приводных ремнях, транспортерах, при движении пылевоздушной смеси в трубопроводах, например при транспортировке муки пневмосистемами или аэрозольтра- нспортом.

Заряды статического электричества могут накапливаться на людях, особенно если подошва обуви не проводит электрический ток, одежде и белье из шерсти, шелка или искусственного волокна, а также при движении по нетокопроводящему полу или выполнении ручных операций с диэлектриком. Потенциал изолированного от земли тела человека может превышать 7 кВ и достигать 45 кВ. Соприкосновение человека с заземленным предметом вызывает искровой разряд.

Энергия разряда этой искры может составлять 2,5...7,5 мДж. Кроме того, статическое электричество оказывает неблагоприятное действие на физиологическое состояние человека, подобное мгновенному удару электрическим током. Величина тока при этом незначительна и непосредственной опасности для человека не представляет. Однако искра, проскакивающая между телом человека и металлическим объектом, может стать причиной производственного травматизма и при определенных условиях даже создать аварийную ситуацию. В производствах, где существует опасность воспламенения взрывоопасных смесей разрядом с человека, необходимо обеспечить работающих электропроводящей (антистатической) обувью. Обувь считается электропроводящей, если электрическое сопротивление между электродом в форме стельки, находящимся внутри обуви, и наружным электродом меньше 10 7 Ом.

Покрытие пола, выполненное из бетона толщиной 3 см, спецбе- тона, пенобетона, считается электропроводящим.

Чтобы предотвратить возможность возникновения опасных искровых разрядов с поверхности получаемых и перерабатываемых веществ, используемых в производстве диэлектрических материалов, оборудования, а также тела человека, необходимо предусматривать меры защиты от разрядов статического электричества.

Чтобы устранить опасности от статического электричества, целесообразно выполнять следующее:

  • отводить заряды путем заземления оборудования и коммуникаций; однако заземление неэффективно, когда применяют аппараты и трубопроводы из диэлектрика или если в процессе технологических операций на внутренней стороне стенки трубопроводов или оборудования происходит отложение нетокопроводящих материалов;
  • добавлять в электризуемые вещества антистатические вещества (графит, сажа, полигликоли и др.), позволяющие уменьшить сопротивление этих веществ;
  • увеличить относительную влажность воздуха (общую или только в местах образования зарядов статического электричества) до
  • 70...75 %;
  • проводить ионизацию воздуха, заключающуюся в образовании положительных и отрицательных ионов, которые нейтрализуют заряды статического электричества;
  • ограничивать скорость движения твердых и жидких веществ в коммуникациях и оборудовании; заведомо безопасной скоростью движения и истечения диэлектрической жидкости является 1,2 м/с.

Практический способ устранения опасности от статического электричества выбирают с учетом эффективности и экономической целесообразности.

В приведенной ниже табл. 14.3 классифицированы средства защиты от поражения электрическим током.

Таблица 14.3

Классификация средств защиты от поражения электрическим током

Окончание таблицы 14.3

Пользование электроэнергией предполагает особенно тщательный подход к вопросу электробезопасности. Для обеспечения допустимых условий работы в электроустановках следует придерживаться ПТЭ, инструкций и от травматизма на объектах электроэнергетики.

Виды защитных средств

Более 50% инцидентов происходят не в течение производственного процесса. Следовательно, несчастные случаи возникают в большей степени по причине незнания правил безопасного обращения с электроустановками.

Воздействие тока на человека

Электроток воздействует на организм человека в нескольких направлениях. При этом редко бывает так, что пострадавший подвергается только одному типу:

  • механическое воздействие – нарушение целостности мышечных тканей и кожных покровов, трещины и переломы костей;
  • биологическое – влияние на работу внутренних органов: обострение заболеваний, нарушение процессов;
  • химическое изменение состава секретов (поджелудочной железы, желчного пузыря) и крови организма;
  • термическое – получение электроожогов, электрических знаков и др.;
  • световое – серьезные нарушения работы органов зрения.

Воздействие электротока на организм имеет разные последствия. Надлежащие меры безопасности помогут не только снизить риск, но и предупредить инциденты.

Соблюдение установленных правил электро,- и пожаробезопасности на производстве и дома. Проведение инструктажей, обучение персонала обращению с объектами электроэнергетического хозяйства. Персонал, занятый обслуживанием электроустановок должен иметь соответствующую компетенцию – наличие группы допуска. Обслуживание электроустановок квалифицированным персоналом существенно повышает электробезопасность на предприятии.

Виды защиты

  1. Применение зануления, заземляющих устройств .Защитное отключение – мера безопасности, предназначенная для быстрого отключения линии (выключателями, рубильниками и т.д.), быстродействие составляет 01,..0,2с. Для объектов возможно применение защитного отключения без дополнительных средств защиты (СЗ).
  • Зануление. Соединение с нейтральным проводом элементов ЛЭП, по которым не проходит ток в нормальном режиме.Принцип срабатывания. При появлении напряжения (на нейтральном проводе) возникает КЗ и приводит в действие автоматику (0,1..0,4с). В качестве нейтрали применяют различные проводники (3-я жила провода, например). Кроме этого, зануление обеспечивает низкие значения на поверхностях электроаппаратов, следовательно, значительно снижается вероятность электроудара.Является основной электрозащитой в сетях до 1 В с глухозаземленной нейтралью.
  • Заземление. Соединение отдельных металлических элементов электроаппаратов (без напряжения) с землей. При возникновении напряжения на объекте, электрический ток будет воздействовать на ЗУ, находящиеся в земле, тем самым обезопасив жизнь человека. Например, при прикосновении к конструкции электроприбора, на которой появился ток в результате неисправности электроизоляции.При совместном использовании ЗУ, зануления и защитного отключения, систему безопасности можно считать максимально эффективной.
  1. Изоляция корпусов и отдельных деталей электроустановок . Для этого применяют электроизоляцию:
  • 1 тип. Рабочая – обеспечивает отсутствие тока на корпусе при нормальных условиях эксплуатации.
  • 2 тип. Дополнительная – покрывает рабочую для усиления защитных качеств.
  • 3 тип. Усиленная – удельное сопротивление равно суммарному двух первых типов. Обеспечивает надежную защиту от тока в случае нарушения рабочего изоляционного слоя.
  1. Применение защиты от электрической дуги.
  2. Защита от перенапряжения и токов утечки. Ограничители перенапряжения и стабилизаторы позволяют создать безопасную систему электроснабжения, обеспечивающую защиту электросети от удара молнии.
  3. Применение безопасного напряжения. Использование напряжения 42 В значительно снижает уровень травматизма.
  4. Системы контроля за параметрами сети (реле и т.д.). Установка конструкций, ограничивающих возможность прикосновения к корпусам оборудования и кабелям, при проведении строительно-монтажных работ.

Ограждающие конструкции, разработанные для предотвращения доступа посторонних лиц к корпусам электроустройств и проводов, находящихся под напряжением. Устанавливаются на ПС, в местах ремонта ЛЭП и установленного на них оборудования. Как правило, для увеличения эффективности мер, с ограждениями совместно применяют сигнализаторы. К ним относят спецконструкции из нетокопроводящих материалов, предупредительные плакаты и таблички, щиты.

  1. Регулярные проверки состояния изоляции проводок и электрооборудования. Мониторинг изоляции. При своевременном осмотре и тестировании состояния изолирующих поверхностей снижается риск возникновения инцидента.

Использование СЗ

По характеру применения различают несколько направлений средств защиты:

  • основные (переносное заземление , указатели напряжения, электротехнические клещи и т.д.) – предметы, обеспечивающие изоляционный барьер между оборудованием и ремонтником;
  • дополнительные, к ним относят подставки, лестницы, накладки, спецодежду, изолирующую обувь и т.д.;
  • средства индивидуальной защиты (СИЗ) – электроинструменты и другие приспособления, которые индивидуально применяет персонал для собственной защиты от действия электротока. К СИЗ относят ручной электроинструмент для обеспечения дополнительной защиты работника (отвертки, клещи, круглогубцы и др.), приспособления для защиты тела (маски, костюмы, рукавицы, обувь, страховочные ремни и др.), конструкции (лестницы, надставки и др.), которые обеспечивают беспрепятственный безопасный доступ к отдельным элементам электрооборудования.

Ручной инструмент с изоляционным покрытием на рукоятках

Порядок пользования СЗ:

  • обслуживающий персонал должен быть подготовленным, перед выполнением производственных задач проводится инструктаж;
  • СЗ хранят в специально оборудованных для этого прохладных сухих помещениях;
  • на предприятиях должен быть обеспечен быстрый доступ выездных бригад к необходимому инвентарю;
  • запрещено пользоваться инструментами и электроустройствами на класс напряжение выше, предусмотренного в инструкции;
  • перед применением СЗ подлежат осмотру;
  • недопустимо использовать ручной инструмент и другие СЗ, которые имеют видимые повреждения;
  • изолирующие СЗ применяют на закрытых объектах или на открытых электроустановках при влажности воздуха не более 75%;
  • для работы при тяжелых погодных условиях применяют специальные защитные конструкции для предотвращения попадания влаги на ЗС;

Диэлектрические перчатки для защиты от поражения электрическим током

Дополнительные средства не применяются в качестве единственных, тогда как основные могут обеспечить защиту от электротока.

Диэлектрические боты для защиты от электротока

  • недопустимо длительное воздействие прямых солнечных лучей на защитные средства. Под действием ультрафиолета быстрее разрушается защитная оболочка;
  • СЗ всех видов регулярно проходят испытания. Тесты заключаются в проверке электрической и, при необходимости, механической части;
  • о дате успешного тестирования на изделие наносится отметка;
  • проверки проходят на предприятии, при необходимости, на ближайших ПС;
  • запрещено хранить резиновые электроизделия в непосредственной близости к источникам тепла (батареи, тепловентиляторы, нагревательное оборудование).

Для защиты от воздействия электрического тока дома следует придерживаться следующих рекомендаций:

  • В детских комнатах и влажных помещениях следует применять неопасное напряжение 12/36 В. Для этого в однолинейную схему стандартной бытовой электросети включают понижающие трансформаторы.
  • Оцените статью:

Основные меры защиты от поражения током: изоляция; недоступность токоведущих частей; электрическое разделение сети с помощью специальных разделяющих трансформаторов; применение малого напряжения (не выше 42 В, а в особо опасных помещениях -12 В); использование двойной (рабочей и дополнительной) изоляции; выравнивание потенциалов; защитное заземление и зануление; защитное отключение; применение специальных электрозащитных средств; организация безопасной эксплуатации электроустановок.

Изоляция относится к основным защитным мерам. Наименьшая величина сопротивления изоляции проводов для большинства электроустановок напряжением до 1000 В должна быть не ниже 500 Ом. В производственных условиях осуществляют контроль и профилактику повреждений изоляции. Сроки контроля определяются правилами технической эксплуатации электроустановок. Например, в сырых помещениях изоляция должна проверяться не реже одного раза в год.

Недоступность токоведущих частей обеспечивают устройством механических ограждений, блокировок и расположением токоведущих частей в недоступном месте.

Для электрического разделения сети используют разделительные трансформаторы, которые предназначены для отделения питающей сети от первичной электрической сети, а также от сети заземления и зануления.

Применение малых напряжений, при которых напряжение прикосновения человека к сети не превосходит длительно допустимого значения, является эффективной защитной мерой. Однако широкому распространению ее мешают трудности технического и экономического характера, связанные с большой сложностью устройства протяженных сетей малого напряжения. Область применения малых напряжений ограничивают ручным электрофицированным инструментом, переносными светильниками.

Двойная изоляция представляет собой совокупность рабочей и защитной (дополнительной) изоляции. При использовании двойной изоляции доступные прикосновению человека части электроустановки не приобретают опасного напряжения при повреждении только рабочей изоляции или только защитной изоляции.

Защитное заземление является наиболее распространенной, эффективной и простой мерой от поражения электрическим током. Под защитным заземлением понимают преднамеренное соединение с землей нетоковедущих металлических частей электроустановок, которые могут оказаться под напряжением при нарушении электроизоляции. Действие заземления состоит в уменьшении до безопасной величины тока, проходящего через тело человека при соприкосновении его с корпусом машины, оказавшейся под напряжением. Это достигается уменьшением потенциала заземленного оборудования при однофазном замыкании, а также выравниванием потенциалов между основанием, на котором стоит человек, и корпусом заземленного оборудования.


Если корпус установки заземлен, то при пробое на корпус одной из фаз в земле образуется поле растекания тока, а на корпусе оборудования возникает потенциал, равный

Человек, стоящий на некотором расстоянии от заземлителя, включается в электрическую цепь параллельно заземлению. Потенциал в точке касания корпуса электроустановки будет равен потенциалу j з, а потенциал ног - потенциалу касания ног земли в точке А: j А.

Тогда напряжение прикосновения человека u пр будет равно:

u пр = j з - j А

Если человек в момент касания будет стоять над заземлителем, то напряжение прикосновения равно нулю, если же человек будет находиться на некотором расстоянии от заземлителя, то напряжение прикосновения будет равно:

u пр = u з a, где a - коэффициент напряжения прикосновения, который является справочной или расчетной величиной, значение его меньше 1

Сила тока, проходящего через человека I ч может быть оценена по следующей формуле:

I ч = I з (R з /R ч) a,

из которой следует, что для обеспечения безопасности человека необходимо, чтобы сопротивление заземления R з и коэффициент a были как можно меньше. По ПУЭ защитное заземление нормируют по величине его сопротивления. Наибольшее сопротивление заземления должно быть не более 4 Ом.

В помещениях с повышенной опасностью или особо опасных помещениях заземление является обязательным при напряжении выше 36 В для переменного тока и 110 В - для постоянного тока. Во взрывоопасных помещениях заземление является обязательным независимо от напряжения.

Конструктивно заземление представляет собой погруженные в грунт электроды и провод (шина), которые соединяют электроды с заземляемым оборудованием. Для заземления используют естественные (трубопроводы, металлоконструкции) и искусственные заземлители.

Занулением называется преднамеренное соедидение частей электроустановки, нормально не находящиеся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока и с глухозаземленным выводом источника однофазного тока.

Защитным отключением называется автоматическое отключение всех фаз сети, обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыкании на корпус или снижении уровня изоляции ниже определенного значения.

К защитным средствам, применяемым в электроустановках, относят приборы, аппараты и приспособления, служащие для защиты персонала, работающего на электроустановках. Все защитные средства в зависимости от назначения делят на 3 группы: изолирующие, ограждающие и вспомогательные.

В электроустановках напряжением выше 1000 В к основным изолирующим средствам относят оперативные и измерительные штанги, изолирующие и токоизмерительные клещи, указатели напряжений, изолирующие лестницы и др. К дополнительным изолирующим - диэлектрические перчатки, резиновые коврики, боты и изолирующие подставки.

В установках напряжением до 1000 В к основным защитным средствам относятся диэлектрические перчатки, инструмент с изолированными ручками, указатели напряжения, изолирующие клещи. К дополнительным - диэлектрические калоши, резиновые коврики и изолирующие подставки.

К ограждающим средствам относятся щиты, изолирующие накладки, временные переносные заземления и предупредительные плакаты.

Вспомогательные средства - это защитные очки, специальные рукавицы, средства для работы на высоте.

При поражениях электрическим током особое значение имеет доврачебная помощь. Помощь, оказанная в течение первой минуты после поражения, позволяет в 90 случаях из 100 спасти жизнь пострадавшему. Первая помощь при несчастных случаях от электрического тока состоит из двух последовательных этапов: освобождения пострадавшего от действия тока и оказания медицинской помощи. Освобождение от тока осуществляется снятием напряжения (отключением установки или перерубанием каждого провода в отдельности топором), или удалением пострадавшего от источника тока с соблюдением мер предосторожности.

Характер медицинской помощи зависит от состояния пострадавшего. Если пострадавший находится в сознании, то ему необходимо обеспечить покой до прибытия врача. При потере сознания, но при наличии дыхания необходимо уложить пострадавшего, обеспечить приток свежего воздуха, согревать тело, давать нюхать нашатырный спирт. При отсутствии признаков жизни необходимо делать искусственное дыхание по методу "изо рта в рот" или "изо рта в нос" и наружный (непрямой) массаж сердца. Цель массажа - поддержать в организме кровообращение. В одну минуту необходимо делать 10-12 вдуваний воздуха и 50-60 надавливаний на грудную клетку.

Вопросы самоконтроля:

1.Заземеление.

2. Первая медицинская помощь при поражении электрическим током.

Литература:

1.Безопасность жизнедеятельности / Под общ. ред. С.В. Белова. – М.: Высшая школа, 2004г.

2.Безопасность жизнедеятельности/ Под ред. Русака О.Н. – С.-Пб.: ЛТА, 1996.

Электрический ток - это четко направленное движение электрически заряженных частиц под непосредственным воздействием электрического поля. Более подробная информация представлена ниже.

Электричество

Явление электрического тока можно наблюдать в следующих ситуациях:

  • при непосредственном нагреве проводников;
  • при изменении их химического состава;
  • при образовании магнитного поля (это явление происходит у всех проводников без исключения).

Электричество является незаменимым элементом в наше время. Без него не может функционировать ни одно предприятие. Однако важно знать, что наряду с полезными свойствами ток может принести вред человеческому здоровью и даже жизнедеятельности. Конечно, это вовсе не означает, что людям стоит вообще отказаться от электричества. Но каждому из нас надо быть осторожнее. Для сохранения своей жизни и здоровья следует соблюдать некоторые меры электрическим током. Об этом мы сейчас и поговорим.

Важно заметить, что защита всего рабочего коллектива в большей мере зависит от положения эксплуатации, а именно от таких факторов как: температура, влажность, запыление здания и т.д.

Печальная статистика

К сожалению, человек очень часто пренебрегает простыми правилами безопасности. И печальная статистика гласит, что в большинстве случаев смерть в результате удара тока настигает работников, которые лучше осведомлены в обращении с электричеством.

Люди не всегда выполняют правила, даже зная их. Что же заставляет работников подвергать себя такой опасности на предприятии? Возможно, это происходит из-за того, что человек хочет сэкономить время. Иногда условия труда заставляют работника предприятия подвергать себя такой опасности. В таких ситуациях необходимо моментально обращаться в соответствующие организации, которые должны быть любых на предприятиях, чтобы избежать летального исхода.

Какой ток несет наибольшую угрозу для человеческой жизни?

Существует три группы мощи электронапряжения. Они по-разному влияют на человеческую жизнедеятельность. Определенный уровень напряжения может нанести незначительный вред человеку и даже убить его. Уровни силы напряжения перечислены ниже:

  • пороговый ток (ощутимый). Под его воздействием человек может ощущать незначительные покалывания. Наблюдается дрожание рук;
  • пороговый (неотпускающий), под влиянием которого, работник физически не может преодолеть сокращение мышц. Он не в состоянии разжать руку и отпустить непосредственный источник напряжения;
  • пороговый фибриляционный. Его воздействие приводит к остановке сердца человека, вызывая сокращение сердечных мышц.

Для человеческого организма не несет никакой угрозы переменный 0,6-1,5 мА и постоянный 5-7 мА ток. Однако переменный 10-15мА и постоянный 50-80мА несут некоторую угрозу для жизни человека, но не смертельную.

Необходимые способы защиты

Существует достаточное количество средств и способов, чтобы защитить человека от поражения током. И об этом должен знать каждый гражданин, который пользуется электричеством. Особенно эти навыки крайне необходимы работникам различных предприятий. Ведь именно они чаще всего подвергаются опасности. Ситуации с ударом человека током довольно распространены на шахтах, различных заводах и т. д. Поэтому очень важно быть предельно осторожным, соблюдать все рекомендации, правила и обязанности при выполнении своей работы.

При создании качественной системы безопасности должно соблюдаться одно очень важное правило. А заключается оно в том, что опасные части, пропускающие ток, необходимо делать недоступными для человека.

Что касается самих защитных мер от поражения электричеством, то, как правило, выделяют:

  • Использование изолирующих накладок, допустимо и использование двойной изоляции.
  • Недоступность токоведущих частей.
  • Применение небольшого напряжения (в помещениях с повышенной опасностью-от 42В, а в помещениях особой опасности-от 12В).
  • Защитное заземление оборудования.
  • Использование специальных защитных средств.
  • Защитное зануление оборудования.

Твёрдая и воздушная изоляция

Как же обеспечить защиту? Использование твердой изоляции помогает предотвратить прикосновение к проводнику электричества.

Есть еще один вариант. Речь идет о воздушной изоляции. Вот только использование ее одной будет недостаточно. Ведь необходима преграда, которая ограничит доступ посторонних лиц. Для этого рекомендуем применять различные кодовые ключи и запорные приспособления.

В целом выделяют две категории средств защиты от поражения электрическим током - индивидуальные и коллективные. Это еще не все. Их еще разделяют на дополнительные электрозащитные средства и основные, применение которых является обязательным.

Способы предосторожности

Основные меры защиты от поражения электрическим током должны быть направлены на надежное изолирование в течение достаточно длительного времени. Они в себя включают:

  • штанги (изолирующие);
  • указатели напряжения;
  • лестницы (изолирующие).

Некоторые способы защиты применяются дополнительно. Но использовать их можно лишь в комплексе с основными. В противном случае безопасность не будет обеспечена в полной мере. Итак, к данным способам защиты относятся:

  • Знаки и плакаты по электробезопасности.
  • Переносное заземление.
  • Подставки и накладки (изолирующие).
  • Диэлектрические перчатки (в таких перчатках возможна работа с напряжением до 1000В).
  • Изолирующие подставки.
  • Диэлектрические галоши.
  • Диэлектрические колпаки и прокладки.

Как уже было сказано выше, существуют и индивидуальные средства защиты от поражения электрическим током (сокращенно СИЗ), к которым относятся: приспособления для защиты головы (каски, шлемы и т.д.), защитные приспособления для глаз и лица (различные маски, очки и т.д.), перчатки и пр. Это еще не все. Существуют также технические меры защиты от поражения электрическим током (сокращенно ТСЗ).

Термины

Среди нас мало профессионалов. Поэтому так важно разобраться в определенных терминах. Вы должны четко понимать все правила и нормы чтобы в дальнейшем избежать ужасных последствий. Предупрежден - значит вооружен! Эта поговорка никогда не теряет актуальности.

Итак, защитное заземление - это электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могу оказаться непосредственно под напряжением.

Запоминаем еще один термин. Защитное зануление - это электрическое соединение открытых проводящих частей электроустановки, которые могут оказаться под напряжением по причине замыкания.

А что такое уравнивание потенциалов? Это соединение частей, проводящих ток для равенства их потенциалов. Данный термин часто используется электриками.

Выравнивание потенциалов - это непосредственно снижение разности потенциалов на поверхности, используя защитные проводники, установленные в земле и подсоединенные к заземляющему устройству.

Под подразумевается использование автоматических установок, целью которых является автоматическое выключение питания в целях безопасности. Надеемся, что вы запомнили эти термины.

Автоматические выключатели

Сейчас пойдет речь о современном виде технической меры защиты от поражения электрическим током. Это автоматические выключатели ВА. Они применяются для проведения тока. При коротких замыканиях и сильных перепадах напряжения происходит его автоматическое отключение. Эти приборы гарантируют безопасность в использовании и долгосрочную работу. Автоматический выключатель ВА чаще всего устанавливается на предприятиях.

Оказание 1-й медпомощи при непосредственном поражении током

Безусловно, важно создать все условия для того, чтобы несчастных случаев не происходило. Каждый работник должен неукоснительно соблюдать все меры осторожности и правила безопасности. Однако несчастные случаи все-таки происходят. Немаловажной задачей становится помочь пострадавшим до приезда скорой помощи. Запомните: здесь важна каждая секунда. Помощь, предоставленная пострадавшему в течение первых минут после поражения, в 90% спасает жизнь. В медуходе за пострадавшим при поражении выделяют два основных этапа:

  1. Освобождение пострадавшего от непосредственного действия электрического тока.
  2. Оказание первой необходимой медицинской помощи пострадавшему.

Очень важно наличие знаков и плакатов по электробезопасности. Ведь они могут спасти кому-то жизнь!

Чтобы освободить пострадавшего от воздействия на него напряжения, необходимо отключить это напряжение или убрать источник электрического тока подальше от человека. Тот, кто оказывает первую помощь, должен так же соблюдать все меры предосторожности, чтобы не усугубить ситуацию.

Пораженный током человек остался в сознании? Тогда его стоит оставить в покое до приезда наряда скорой. Если же он потерял сознание, но есть признаки дыхания, то необходимо положить и обогреть пострадавшего, а затем постараться привести его в чувства. При отсутствии каких-либо признаков жизни необходимо сделать массаж сердца в комплексе с искусственным дыханием.

При прохождении через тело человека тока, превышающего 30 мА, возникает угроза его здоровью. Неблагоприятное воздействие сказывается на мышечных тканях, органах дыхания, функциональном состоянии сердца. Требуется достаточно быстрое отключение тока, чтобы ситуация не стала опасной для жизни. Еще лучше использовать специальные средства и , предотвращающие возникновение соответствующих ситуаций.

Определения и нормы

Подробно мероприятия по защите от поражения электрическим током изложены в государственном стандарте РФ ГОСТ Р МЭК 61140-2000, который вступил в действие с 01.01. 2002 г. Его основные положения идентичны международным нормам. Этот документ является базовым. На его основе допустима разработка федеральных, отраслевых и других нормативов. Использованная терминология соответствует данным международных профильных (электротехнических) словарей.

Область применения этого документа распространяется на электрическое оборудование, в котором используется напряжение до 1 000 V переменного тока, или до 1 500 V – постоянного. Правила относятся не только к отдельным установкам, но и к системам, их взаимным связям.

Для дополнительного уточнения по отдельным параметрам средств безопасности применяют специализированные стандарты. Так, чтобы узнать больше о защитных свойствах изолирующих оболочек проводников можно изучить государственный стандарт РФ 14254 – 96.

Пояснения к некоторым из основных определений:

  1. Под «прямым» понимают прикосновение человека к проводнику, который находится под напряжением. Но опасные ситуации возникают и в случае пробоя изоляции. Если в нормальном состоянии часть оборудования не является проводящей частью, используют иной термин – «косвенное прикосновение».
  2. Изоляция – это не только полимерная оболочка провода. Она может быть жидкой (масло в трансформаторе), газообразной (промежуток воздуха).
  3. Усиленный вариант изоляции состоит минимум из двух частей. Каждую из них недопустимо испытывать отдельно в качестве основного, или дополнительного защитного слоя.
  4. К средствам безопасности помимо изоляции относят также:
  • среды, не проводящие ток – полы, стены;
  • устройства и ограждения, препятствующие несанкционированному доступу;
  • оболочки, предотвращающие контакт с токоведущими элементами;
  • средства, обеспечивающие одинаковую величину потенциалов между проводником и землей;
  • системы, отключающие один или несколько проводников при возникновении аварийной ситуации;
  • использование низкого напряжения.

Индивидуальные и автоматические средства защиты

В любом случае при построении качественной системы безопасности должно соблюдаться основное правило: «опасные части (проводящие ток) делают недоступными, доступные части не должны представлять опасность для человека».

Меры безопасности

Приведенное выше правило рассматривается в нормальных условиях при возникновении неисправности. Для первого случая хватит основной защиты. Она составляется из мер (одной, или нескольких), способных предотвратить контакт человека с токопроводящей частью. Ниже перечисляется несколько вариантов:

  • Твердая изоляция, предотвращающая прикосновение к проводнику.
  • Воздушная изоляция. В этом случае одной ее недостаточно, необходим барьер, препятствующий доступу посторонних лиц. Такое ограждение делают с высокой прочностью. При необходимости его оснащают запорными устройствами, которые открываются с помощью ключей, кодовых или других специальных устройств.
  • Установка проводящих частей на слишком большом расстоянии друг от друга, что физически не позволяет прикоснуться к ним одновременно.
  • Использование приборов освещения, инструмента с электроприводом, функционирующих при низком напряжении питания (от 12 до 36 V). Для создания соответствующей системы применяют понижающие трансформаторы. Дополнительным средством безопасности является заземление их вторичных обмоток.
  • Ограничение уровня тока не более 2 мА, который протекает при сопротивлении 2 кОм.

Общий вид понижающего трансформатора

Цифры в последнем пункте указаны только для конкретной ситуации. Они будут иными для постоянного тока. Установлены соответствующие ограничительные нормы для постоянного тока, порога болевых ощущений, величины статического заряда. Следует учитывать также форму электрического сигнала, его частоту.

Для второго случая при возникновении неисправности применяют другие меры, дополнительно к перечисленным выше пунктам, либо самостоятельно:

  1. Изоляция, способная выдержать такие же уровни напряжения, как основной слой.
  1. Система, выравнивающая потенциалы. Ее составляют, как правило, из нескольких частей:
  • проводник заземления;
  • металлические конструкции, трубопровод;
  • соединение проводниками частей в локальных объемах, где присутствуют особые условия.
  1. Автоматическое устройство, отключающее питание при появлении опасных режимов работы.

Защитные мероприятия

Теперь подробнее об основных и вспомогательных средствах безопасности. Так как их точный состав зависит от конкретных условий, следует делать ссылки на основные защитные мероприятия и те, которые требуются при возникновении неисправностей.

Заземление и установки с изолированной нейтралью

Меры защиты от поражения электротоком и их особенности

Основная защита Меры, которые используют при возникновении неисправности
Отключение питания с помощью автоматики Слой изоляции, который располагается между опасными и открытыми проводниками Отключение от источника питания в автоматическом режиме с применением системы выравнивания потенциалов
Изоляция Основной изоляционный слой на проводниках Дополнительная изоляция
Метод выравнивания потенциалов Система, выравнивающая потенциалы, не допускающая возникновения напряжений опасного уровня
Разделение цепей (электрическое) Изоляционный слой между проводниками тока и открытыми частями, способными проводить ток Отделение поврежденной цепи от других участков с заземлением, либо только выравнивание потенциалов напряжений

Аналогичным образом в государственном стандарте определены параметры следующих средств безопасности:

  • отделение средой, не проводящей электрический ток;
  • использование систем БСНН (SELV) и ЗСНН (PELV);
  • ограничение в установившемся режиме уровня тока прикосновения;
  • ограничение электрического заряда.

Классификация

Электрическое оборудование разделяется на специальные классы защиты. Это упрощает создание эффективных мер защиты в сложных ситуациях, выполнение требований государственных контролирующих органов и другие практические действия. Особенности классов защиты:

  • Класс «0». В таком оборудовании используется изоляция в качестве основной защитной меры. Дополнительные средства безопасности при возникновении неисправностей не предусмотрены.
  • Класс «1». К этой группе относят оборудование, оснащенное системой выравнивания потенциалов. Она срабатывает при возникновении неисправностей и предотвращает . В этих установках проводящие элементы подсоединяют к специальному зажиму. Его в процессе монтажа подключают к системе выравнивания потенциалов. Для исключения ошибок такие места маркируют специальным знаком, буквами «РЕ», цветовой комбинацией (желтый и зеленый).
  • Класс «2». В этом оборудовании используют основную и дополнительную изоляции. В защитных оболочках не допускается использование крепежных элементов, не проводящих ток, которые могут быть сняты для технического обслуживания, или заменены на металлические аналоги.
  • В оборудовании класса «3» используют сверхнизкие напряжения, которые не превышают 50 V (переменного), или 120 V (постоянного) тока. Его эксплуатация возможна в любых режимах, причем опасные для человека ситуации исключены. Именно поэтому подключение таких устройств к нулевым проводникам для защиты не обязательно.

Дополнительные требования

Средства безопасности следует рассматривать в комплексе с условиями их использования. Так, например, некоторые устройства (автоматы, плавкие предохранители) необходимо после срабатывания возвращать в исходное положение, либо заменять. Для поддержания электрооборудования в рабочем состоянии длительное время регулярно производятся осмотры, техническое обслуживание. Следует обеспечить наличие достаточных защитных мер при выполнении таких операций.

Если предполагается проведение регламентных работ в ручных режимах, опасные токоведущие части располагают в недоступных местах. При невозможности выполнения этого требования применяют специальные устройства. Они обеспечивают надежную изоляцию от электрического источника питания.

Оболочки и ограждения снимаются для выполнения работ только персоналом, обладающим соответствующими навыками. Квалификация специалистов подтверждается документально (устанавливается группа допуска). Их знания проверяются регулярно, для чего на предприятиях создают специальные комиссии.

Изучение правил электробезопасности

Видео про помощь пострадавшему

Данное видео рассказывает об особенностях оказания первой помощи пострадавшему от электрического тока, о реанимационных мероприятиях.

Доступ к защитным элементам и устройствам нельзя ограничивать. Их размещают на хорошо видимых местах. Отдельно установлена норма для ситуаций, когда основным является отключение электроустановок от источника тока. При этом необходимы снятие кожуха и демонтаж ограждения. В этих случаях конденсаторные приборы должны разряжаться автоматически до безопасного уровня не более чем за 5 секунд. Если такое условие не выполняется, то необходима табличка с надписью, предупреждающей о реальном времени разряда.



 

Возможно, будет полезно почитать: