Радиационно опасные объекты. Радиационно-опасные объекты (РОО) Какие объекты называются радиационно опасными

Согласно действующим нормам радиационной безопасности и основным санитарным правилам потенциальная опасность радиационного объекта определяется его возможным радиационным воздействием на население и персонал при радиационной аварии. Потенциально более опасными являются радиационные объекты, в результате деятельности которых при аварии возможно облучение не только работников объекта, но и населения. Наименее опасными радиационными объектами являются те, где исключена возможность облучения лиц, не относящихся к персоналу. По потенциальной радиационной опасности устанавливается несколько категорий объектов:

Радиационные объекты, при аварии на которых возможно их радиационное воздействие на население и могут потребоваться меры по его защите;

Радиационные объекты, при аварии на которых возможно их радиационное воздействие в санитарно-защитной зоне;

Объекты, при аварии на которых радиационное воздействие ограничивается территорией объекта;

Объекты, радиационное воздействие от которых при аварии ограничивается помещениями, где проводятся работы с источниками излучения.

Установление категории радиационного объекта базируется на оценке последствий аварий, возникновение которых не связано с транспортированием источников излучения за пределами территории объекта и гипотетическим внешним воздействием (взрывы в результате попадания ракеты, падения самолета или террористического акта). Категория радиационных объектов должна устанавливаться на этапе их проектирования. Для действующих радиационных объектов категории устанавливаются администрацией по согласованию с органами, осуществляющими государственный санитарно-эпидемиологический надзор.

Размещение радиационных объектов и зонирование территорий

При выборе места строительства радиационного объекта необходимо учитывать категорию объекта, его потенциальную радиационную и химическую опасность для населения и окружающей среды. Площадка для вновь строящихся объектов должна отвечать требованиям перечисленных правил. При выборе места размещения радиационных объектов должны быть оценены метеорологические, гидрологические, геологические и сейсмические факторы, влияющие на безопасность радиационных объектов при их нормальной эксплуатации и при возможных авариях. При выборе площадки для строительства радиационных объектов, на которых происходит обращение с радиоактивными веществами, следует отдавать предпочтение: участкам на малонаселенных незатопляемых территориях; с устойчивым ветровым режимом; с топографическими и гидрогеологическими условиями, ограничивающими возможность распространения радиоактивных веществ за пределы промышленной площадки объекта.



Потенциально опасные радиационные объекты должны располагаться с учетом розы ветров преимущественно с подветренной стороны по отношению к жилой территории, лечебно-профилактическим и детским учреждениям, а также к местам отдыха и спортивным сооружениям. Генеральный план радиационного объекта должен разрабатываться с учетом развития производства, прогноза радиационной обстановки на объекте и вокруг него и возможности возникновения радиационных аварий. Размещение радиационного объекта должно быть согласовано с органами, осуществляющими государственный санитарно-эпидемиологический надзор, с учетом перспектив развития, как самого объекта, так и района его размещения. Не допускается размещение источников ионизирующего излучения и работа с ними в жилых зданиях и детских учреждениях. Исключение - рентгенодиагностические аппараты с цифровой обработкой изображения, применяемых в стоматологической практике, максимальная рабочая нагрузка которых не превышает 40 мА мин/нед., при условии обеспечения требований норм радиационной безопасности для населения в пределах помещений, в которых проводятся рештеностоматологиче-ские исследования.

Санитарно-защитные зоны. Вокруг потенциально опасных радиационных объектов устанавливается санитарно-защитная зона, а вокруг радиационных объектов, при аварии на которых есть риск облучения населения, - также и зона наблюдения. Размеры санитарно-защитной зоны и зоны наблюдения вокруг радиационного объекта устанавливаются с учетом уровней внешнего облучения, а также величин и площадей возможного распространения радиоактивных выбросов и сбросов.



При расположении на одной площадке комплекса радиационных объектов санитарно-защитная зона и зона наблюдения устанавливаются с учетом суммарного воздействия объектов.

Внутренняя граница зоны наблюдения всегда совпадает с внешней границей санитарно-защитной зоны.

Санитарно-защитные зоны и зоны наблюдения вокруг судов и иных плавсредств с ядерными установками устанавливаются в местах их ввода в эксплуатацию, в портах стоянки и в местах снятия с эксплуатации.

Границы санитарно-защитной зоны и зоны наблюдения радиационного объекта на стадии проектирования должны быть согласованы с органами, осуществляющими государственный санитарно-эпидемиологический надзор.

В санитарно-защитной зоне радиационного объекта запрещается постоянное или временное проживание, размещение детских учреждений, а также не относящихся к функционированию радиационного объекта лечебных учреждений, предприятий общественного питания, промышленных объектов, подсобных и иных сооружений и объектов. Территория санитарно-защитной зоны должна быть благоустроена и озеленена.

В зоне наблюдения, на случай аварийного выброса радиоактивных веществ, администрацией территории должен быть предусмотрен комплекс защитных мероприятий в соответствии с требованиями раздела IV НРБ-99/2009.

В санитарно-защитной зоне и зоне наблюдения силами службы радиационной безопасности объекта должен проводиться радиационный контроль.

Учитывая многочисленные источники возможного радиоактивного загрязнения окружающей среды, создающие техногенный радиационный фон, необходимо определить радиационно-опасные объекты.

Радиационно-опасные объекты (РОО) - это объекты народного хозяйства, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, и загрязнение окружающей среды.

К ним относятся:

Учреждения, имеющие исследовательские ядерные реакторы и испытательные стенды;

Атомные станции (атомные электрические станции, атомные станции теплоснабжения, атомные энерготехнологические станции);

Урановые рудники;

Предприятия по переработке урановой руды и изготовлению ядерного топлива;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов.

Аварийная ситуация может возникать при транспортировке, хранении твэлов и других источников с РВ.

Ядерная техника породила сложную проблему удаления радиоактивных отходов. Несмотря на то, что в настоящее время разработаны надежные, безопасные способы переработки и захоронения радиоактивных отходов, причиной загрязнения окружающей среды могут быть случайные аварии, связанные с разрушением хранилищ. Загрязнение окружающей среды РВ может происходить также при неправильном содержании мест переработки и хранении радиоактивных отходов. Радиоактивные нуклиды в качестве закрытых источников ионизирующих излучений широко используют в промышленности, медицине, сельском хозяйстве.

Радиоактивное излучение от этих источников может создавать опасность в окружающей среде только в результате их неудовлетворительного хранения.

Для нашей страны характерно еще и радиоактивное загрязнение отдельных ее регионов. Это результат ряда крупных радиационных аварий: на Чернобыльской АЭС, на ПО «Маяк», в Челябинске-65, Томске-7 и т.д.

Радиационную опасность могут представлять транспортные средства, имеющие ядерно-энергетические установки, а также военные объекты, на которых находятся ядерные боеголовки. Из числа РОО наибольшую потенциальную опасность для населения представляют атомные электростанции, аварии на которых могут привести к тяжелым радиационным последствиям (свидетельством являются события на ЧАЭС и Фукусиме).

Воздействие ионизирующего излучения на живые организмы

Радиоактивные вещества и их активность.

Радиоактивные вещества принято оценивать по их активности.

Активность определяется числом распадов, происходящих в данном количестве веще-

ства за единицу времени. Активность изотопа чаще определяется периодом полураспада.

Период полураспада радиоактивного изотопа - промежуток времени, за который

число радиоактивных атомов данного изотопа уменьшается вдвое. Так, для урана-238 он

составляет приблизительно 4,5 млрд лет, а для полония-212 – около 3 · 10-7 с.

Наиболее опасны те радиоактивные вещества, период полураспада которых близок к

продолжительности жизни человека. Большую опасность для здоровья человека предста-

вляют наиболее распространенные в природе изотопы, например, стронций-90 (имеющий

период полураспада 28 лет) и цезий-137 (период полураспада 33 года). Из короткоживущих радиоактивных изотопов наиболее распространен радон-222, составляющий 1/3 естественной радиации. Период его полураспада равен 3,8 суток.

В системе СИ активность измеряется в беккерелях (Бк). 1 Бк равен одному распаду

ядра в секунду. Часто пользуются внесистемной единицей – кюри (Ки); 1 Ки = 3,7 · 1010 Бк.

Активность в ряде случаев измеряют в милликюри (мКи), составляющей 10-3 кюри, и

микрокюри (мкКи) = 10-6кюри.

Биологическое действие ионизирующих излучений на организм имеет ряд особенностей:

Неся в себе огромную опасность для здоровья и жизни, оно неощутимо человеком;

Существует скрытый (инкубационный) период проявления действия ионизирующего излучения, который может быть весьма продолжительным;

Одним из видов последствий облучения являются так называемые генетические

эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

Получаемые человеком дозы излучений накапливаются в организме (кумулятивный

эффект), поэтому вероятность возникновения заболеваний пропорциональна длительности воздействия радиации;

Наиболее чувствительны к облучению дети в период роста;

Степень чувствительности к облучению различных органов и тканей человека

неодинакова;

Радиочувствительность живых организмов также весьма различна (смертельная

доза для бактерий в 100 раз превышает дозу для млекопитающих).

Радиационно опасные объекты и аварии на них

Ядерные технологии несут в себе опасность радиационного загрязнения окружающей

среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду.



Радиационная авария - нарушение пределов безопасной эксплуатации ядерно-энер-

гетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении ТВЭлов; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) - научные, народнохозяйственные (промы-

шленные) или оборонные объекты, при разрушениях которых могут произойти массовые

радиационные поражения людей, животных и растений, а также заражение среды.

Радиационные аварии и их классификации

В зависимости от вида радиационно опасного объекта, масштабов и опасности послед-

ствий существует несколько различных классификаций радиационных аварий, происше-

ствий и инцидентов. В табл. 8 приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Таблица 8 Международная шкала оценки происшествий на АЭС, адаптированная для России

Радиационно опасные объекты (РОО) - это объекты, при аварии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации значения, что может привести к массовому облучению людей, сельскохозяйственных животных и растений, а так же радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся:

  • ? атомные станции;
  • ? предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;
  • ? предприятия по изготовлению ядерного топлива;
  • ? научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;
  • ? транспортные ядерные энергетические установки;
  • ? военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких аварий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра радиоактивные вещества могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых жизненных процессов в организме человека. Человек в момент воздействия радиоактивных излучений не получает телесных повреждений и не испытывает болевых ощущений. Однако в результате воздействия радиоактивных излучений у пораженных людей может развиться лучевая болезнь, приводящая к смертельному исходу.

При радиоактивном заражении живой организм в течение нескольких секунд получает дозу проникающей радиации, а доза внешнего облучения накапливается им в течение всего времени пребывания на зараженной территории.

Накопление дозы внешнего облучения в организме происходит неравномерно. Большая ее часть накапливается в первые часы и дни после выпадения радионуклидов, когда уровень радиации наиболее высокий. В первые сутки накапливаются 50% суммарной дозы до полного распада радиоактивных веществ, за четверо суток - 60%. Поэтому особенно важно обеспечить защиту от радиации в первые четверо суток.

Доза облучения, полученная живым организмом в течение четырех суток подряд (в любом распределении по дням) называется однократной. При продолжительном облучении в организме наряду с процессами поражения происходят и процессы восстановления. В связи с этим суммарная доза облучения, вызывающая один и тот же эффект, при продолжительном многократном облучении более высокая, чем при однократном. Дозы, не приводящие к потере работоспособности при однократном и многократном облучении, следующие: однократная (в течение четырех суток) - 50 Р; многократная: в течение 10- 30 суток - 100 Р, 3-х месяцев - 200 Р, в течение года - 300 Р.

Превышение указанной дозы вызывает заболевание лучевой болезнью. Лучевая болезнь протекает, как правило, в острой форме и в зависимости от однократной дозы облучения может быть разной степени тяжести: легкой (100-200 Р), средней (200-400 Р), тяжелой (400-600 Р) и крайне тяжелой (свыше 600 Р).

Лучевая болезнь легкой степени характеризуется недомоганием, общей слабостью, головными болями, небольшим снижением лейкоцитов в крови. Все пораженные выздоравливают без лечения.

Лучевая болезнь средней тяжести проявляется в более тяжелом недомогании, расстройстве функций нервной системы, рвоте. Количество лейкоцитов снижается более чем наполовину. При отсутствии осложнений люди выздоравливают через несколько месяцев. При осложнениях может наступить гибель до 20% пораженных.

При лучевой болезни тяжелой степени отмечаются тяжелое общее состояние, сильные головные боли, рвота, понос, кровоизлияния в слизистые оболочки и кожу, иногда потеря сознания. Количество лейкоцитов и эритроцитов в периферической крови резко снижается, появляются осложнения. Без лечения смертельные исходы наблюдаются в 50% случаев.

Лучевая болезнь крайне тяжелой степени без лечения заканчивается смертельным исходом в 80-100% случаев.

При наружном заражении радиоактивными веществами наблюдаются «бета-ожоги» кожных покровов. У людей наиболее часто отмечаются поражения кожи на руках, голове, в области шеи; поясницы;

у животных - на спине, а при поедании травы с загрязненного пастбища - на морде. Тяжесть поражения зависит от продолжительности контакта радионуклидов с поверхностью тела человека, животного. Допустимая степень радиоактивного заражения поверхности тела человека 20 мР/ч, животного - 100 мР/ч при контакте в течение суток.

Внутреннее поражение людей радиоактивными веществами может произойти при вдыхании воздуха и приеме пищи и воды. Большая часть радионуклидов проходит кишечник транзитом и выделяется из организма. При этом они вызывают радиационное поражение слизистой оболочки желудочно-кишечного тракта, что приводит к расстройству функций органов пищеварения. Другая часть изотопов, биологически наиболее активных, к которым в первую очередь относятся йод-131, стронций-90, цезий-137, обладает высокой радиотоксичностью и почти полностью всасывается в кишечник, распределяясь по органам и тканям организма.

Таким образом, при аварии на АЭС следует защищаться от двух видов облучения: внешнего и внутреннего. Первое возникает в результате воздействия на человека излучений, испускаемых радиоактивными веществами, выпавшими на земную поверхность. Второе - результат попадания радиоактивных веществ внутрь организма при вдыхании воздуха и приеме пищи и воды.

В случае аварии на АЭС и угрозе радиоактивного заражения местности подается предупредительный сигнал гражданской обороны «Внимание всем!» в виде сирен, прерывистых гудков предприятий и специальных транспортных средств. По радио и телевидению передается сообщение местных органов власти или гражданской обороны.

Противорадиационная защита включает в себя использование коллективных и индивидуальных средств защиты, соблюдение режима поведения на зараженной радиоактивными веществами территории, защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль и экспертизу заражения радиоактивными веществами продуктов питания и воды.

При сообщении о радиационной опасности необходимо выполнить следующие мероприятия.

  • 1. Укрыться в жилом доме или служебном помещении. Принять меры от проникновения в помещение (дом) радиоактивных веществ с воздухом, для чего закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.
  • 2. Создать запас питьевой воды и перекрыть краны. Накрыть колодцы пленкой или крышкой.
  • 3. Провести профилактический прием препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение 7 суток по одной таблетке (0,125 г) на один прием. Водно-спиртовой раствор йода нужно принимать после еды 3 раза в день в течение 7 суток по 3-5 капель на стакан воды. Важно знать, что прием стабильного йода за 6 ч и менее до подхода радиоактивного облака или выпадания радиоактивных веществ обеспечивает полную защиту. Если принять его в начале облучения, то эффективность несколько уменьшается, а через 6 ч снижается наполовину.
  • 4. Подготовиться к возможной эвакуации.
  • 5. Постараться соблюдать следующие правила радиационной безопасности и личной гигиены:

S использовать в пищу только консервированное молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергшиеся радиоактивному загрязнению;

S не пить молоко от коров, которые продолжают пастись на загрязненных полях, и не употреблять овощи, которые росли в открытом грунте и были сорваны после начала поступления радиоактивных веществ в окружающую среду;

S не пить воду из открытых источников и водопровода;

S принимать пищу только в закрытых помещениях, при этом тщательно мыть руки с мылом перед едой и полоскать рот 0,5%-ным раствором питьевой соды;

S избегать длительных передвижений по загрязненной территории, не ходить в лес и воздержаться от купания в открытом водоеме;

S входя в помещение с улицы, оставлять «грязную» обувь на лестничной площадке или на крыльце.

  • 6. При передвижении по открытой местности защищать органы дыхания противогазом, респиратором, носовым платком, бумажной салфеткой или марлевой повязкой (фильтрующая способность носового платка, бумажной салфетки и марлевой повязки значительно повышается при смачивании водой). Для защиты кожи и волосяного покрова следует использовать защитные костюмы, а если их нет - любые предметы одежды (головные уборы, косынки, накидки, перчатки, резиновые сапоги).
  • 7. При оказании первой доврачебной помощи на территории радиоактивного заражения в первую очередь следует выполнять те мероприятия, от которых зависит сохранение жизни пораженного. Затем необходимо устранить или уменьшить внешнее гамма-облучение, для чего используются защитные сооружения: убежища, заглубленные помещения, кирпичные, бетонные и другие здания. Чтобы предотвратить дальнейшее воздействие радиоактивных веществ на кожу и слизистые оболочку, проводят частичную санитарную обработку. Частичная санитарная обработка проводится путем обмывания чистой водой или обтирания влажными тампонами открытых участков кожи. Пораженному промывают глаза, дают прополоскать рот. Затем, надев на пораженного респиратор, ватно-марлевую повязку или закрыв его рот и нос полотенцем, платком, шарфом, проводят частичную дезактивацию его одежды. При этом учитывают направление ветра, чтобы обметываемая с одежды пыль не попадала на других. При попадании радиоактивных веществ внутрь организма промывают желудок, дают адсорбирующие вещества (активированный уголь). При появлении тошноты принимают противорвотное средство. В целях профилактики инфекционных заболеваний рекомендуется принимать противо- бактериальные средства.
  • 8. При эвакуации после прибытия в безопасный район необходимо пройти полную санитарную обработку и дозиметрический контроль. Санитарная обработка заключается в тщательном обмывании всего тела водой с мылом. Обычно она проводится в местных банях, душевых павильонах, санитарных пропускниках, на специально организованных для этого санитарно-обмывочных пунктах, а в теплое время года и в незараженных проточных водоемах. Дозиметрический контроль осуществляется как перед началом санитарной обработки, так и после нее. Если результат оказался неудовлетворительным, санитарную обработку повторяют. Одежда и обувь при этом подвергается частичной или полной дезактивации. Частичная дезактивация заключается в вытряхивании и выколачивании одежды и обуви с использованием щеток, веников, палок. Полная дезактивация одежды и обуви проводится на пунктах специальной обработки, оснащенных специальными установками и приборами. После дезактивации каждую вещь подвергают дозиметрическому контролю, и если окажется, что уровень загрязнения выше допустимых норм, работа проводится вторично. Следует отметить, что работа по дезактивации одежды и обуви проводится в надетых средствах защиты кожи и органов дыхания (противогазах, респираторах, ватно-марлевых повязках, защитных костюмах).
  • 9. Продовольствие и вода также подлежат дезактивации. При этом в зависимости от степени заражения и характера радиоактивных веществ, применяется тот или иной метод дезактивации - отстаивание, фильтрование, перегонка. Воду лучше всего пропустить через фильтры, изготавливаемые из подручных материалов - почвы различных видов, песка, мелкого гравия, угля. Продовольствие дезактивируется путем обработки или замены зараженной тары. Жидкие продукты дезактивируют путем длительного отстаивания, после чего верхний незаряженный слой сливают в чистую посуду. Готовая пиша (суп, щи, каша и др.) дезактивации не подлежит. Ее следует закопать в землю.

Конечно, эти рекомендации не исчерпывают всех мер противорадиационной защиты. Однако соблюдение перечисленных правил или хотя бы части из них позволяет значительно уменьшить риск неблагоприятных последствий аварий на объектах с выбросом радиоактивных веществ.

Вопросы и задания

  • 1. Какие объекты относятся к пожароопасным?
  • 2. Перечислите основные и вторичные поражающие факторы пожара.
  • 3. Какие принимают меры по предотвращению пожаров?
  • 4. Какие в настоящее время используются средства пожарной сигнализации? Дайте их краткую характеристику.
  • 5. Охарактеризуйте спринклерные и дренчерные установки противопожарной автоматики.
  • 6. Какие противопожарные средства используются для тушения пожара? Кратко охарактеризуйте их.
  • 7. Как обследовать задымленное помещение?
  • 8. Какие объекты относятся к взрывоопасным?
  • 9. Какие основные поражающие факторы взрыва?
  • 10. Какие принципы предотвращения взрывов на производственных объектах вы знаете?
  • 11. Какие мероприятия проводятся при ликвидации последствий взрывов?
  • 12. Какие объекты относятся к гидродинамически опасным?
  • 13. Что значит гидродинамическая авария?
  • 14. Чем характеризуется катастрофическое затопление?
  • 15. Как проводится эвакуация и спасение населения при катастрофическом затоплении?
  • 16. Какие объекты относятся к химически опасным?
  • 17. Дайте характеристику наиболее распространенным ядовитым веществам, используемым в промышленном производстве и экономике.
  • 18. Каковы признаки отравления хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 19. Перечислите основные меры зашиты персонала и населения при авариях на химически опасных объектах.
  • 20. Какой существует порядок действий персонала и населения при получении ими информации об аварии и опасности химического заражения?
  • 21. Как повысить защитные свойства дома от проникновения ядовитых веществ?
  • 22. Какие правила следует соблюдать при выходе из зоны химического заражения?
  • 23. Как оказать первую помощь пострадавшим от воздействия хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 24. Что представляет собой дегазация? Какие способы дегазации вы знаете и в чем их суть?
  • 25. Какие объекты являются радиационно опасными?
  • 26. Что значит радиационная авария? Каковы ее последствия?
  • 27. Какие мероприятия необходимо выполнить при получении информации о радиационной опасности?
  • 28. Какие правила радиационной безопасности и личной гигиены следует соблюдать при радиоактивном заражении местности?
  • 29. Какие существуют методы дезактивации продовольствия и воды?
  • 30. Оцените опасные в техногенном отношении районы в Вашем городе (поселке).

1. Атомные электростанции. Роль атомных электростанций в структуре мировой выработки электроэнергии неуклонно возрастает. Россия (в составе СССР) запустила первый в мире атомный реактор в мирных целях, но постепенно утрачивала свои

передовые позиции. В настоящее время ситуация с числом действующих реакторов в мире по данным МАГАТЭ и Росатоматакова: США – 104, Франция – 59, Япония – 55, Россия - 31, Великобритания – 23, Южная Корея – 20, Канада – 18, Германия – 17, Украина – 15. Сейчас доля вырабатываемой на АЭС России электроэнергии составляет 16%. Поставлена задача, построив к 2030 г. 40 реакторов, довести эту долю до 25%.

2. Предприятия по изготовлению ядерного топлива, боевых зарядов и др.

3. Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов (к 2005 г. в России накоплено более 70 млн. тонн твёрдых радиоактивных отходов).

4. Военные объекты с ядерными боеголовками.

5. Учреждения, имеющие исследовательские реакторы и испытательные стенды.

6. Предприятия и организации, использующие радиоактивные изотопы в своей деятельности (онкологические клиники, дефектоскопические лаборатории и т.д.).

7. Транспортные средства, имеющие ядерно-энергетические установки.

8. Предприятия и организации по ремонту и испытаниям объектов, связанных с ионизирующим излучением.

9. Транспортные средства, перевозящие радиоактивные материалы.

10. Последствия Чернобыльской аварии, выразившиеся в радиационно-зараженных участках местности.

Большую угрозу для здоровья и жизни человека представляют аварии на за­водах ядерной промышленности, атомных энергетических установках, в хранили­щах ядерных материалов и отходов.

Радиационная авария - это авария на РОО, при которой произошел выброс радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, вызвавший облучение населения и загрязнение окружающей среды.

В результате аварий на РОО в атмосферу выбрасываются РВ, распростра­няющиеся под воздействием ветра на значительные расстояния. Выпадая в виде осадков, РВ образуют зонурадиоактивного загрязнения .Зона радиоактивного загрязнения - местность, на которой произошло выпадение радиоактивных веществ. При определенных кон­центрациях загрязнения местности проживание на ней становится опасным для жизни.

Радиационная авария может произойти по не­скольким причинам: ошибки при проектировании, износ оборудования, ошибки оператора и нарушения эксплуатации.

Аварии на хранилищах радиоактивных отходов представляют большую опасность, так как они могут привести к длительному радиоактивному загрязнению обширных территорий высокотоксичными радионуклидами и вызвать необходимость широкомасштабного вмешательства.

Подобный аварийный выброс произошел 29 сентября 1957 г. на комбинате «Маяк» (Челябинск-40). Был загрязнен участок местности шириной 9 км, длиной более 100 км. След протянулся через Челябинскую, Свердловскую и Тюменскую области. Было эвакуировано 10 700 чел., проживающих на этой территории.

Аварийная ситуация при глубинном захоронении жидких радиоактивных отходов в подземные горизонты возможна при внезапном разрушении оголовка скважины, находящейся под давлением.

В случае размыва и растворения пород пласта-коллектора агрессивными компонентами радиоактивных отходов, например кислотами, увеличивается пористость пород, что может приводить к утечке газообразных радиоактивных отходов. В этом случае переоблучению, как правило, может подвергнуться персонал хранилища.

Основной вклад в формирование радиоактивного загрязнения местности в случае радиационной аварии на радиохимическом производстве могут вносить изотопы 90Sr, 134Cs, :37Cs, 238Pu, 239Pu, 240Pu, 24"Pu, 24lAm, 244Cm. Повышенный фон гамма-излучения на местности создают в основном 134Cs, l37Cs.

Аварии с радионуклидными источниками связаны с их использованием в промышленности, газо- и нефтедобыче, строительстве, исследовательских и медицинских учреждениях. Аварии с радиоактивными источниками могут происходить без их разгерметизации и с разгерметизацией.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы 239Ри и 24iAm с преобладанием внутреннего облучения за счет ингаляции.

Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на нормативно-правовых документах, регламентирующих ее безопасность.

Распространенными в перевозках и наиболее опасными являются гексафторид урана и соединения плутония. Соединения долгоживущего (более 2000 лет!) плутония (обычно диоксид плутония) представляют опасность из-за длительного ос-излучения и высокой токсичности. Основным путем поступления аэрозоля диоксида плутония является ингаляционный.

Отдельно следует указать на возможность возникновения аварии реактора с развитием цепной ядерной реакции - активного аварийного взрыва, сопровождающегося не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

В результате крупномасштабных радиационных аварий из поврежденного ядерного энергетического реактора в окружающую среду выбрасываются радиоактивные вещества в виде газов и аэрозолей, которые образуют радиоактивное облако. Это облако, перемещаясь в атмосфере по направлению ветра, вызывает по пути своего движения радиоактивное загрязнение местности и атмосферы.

На ядерных энергетических установках в результате аварийного выброса возможны следующие факторы радиационного воздействия на население:

Ø внешнее облучение от радиоактивного облака и от радиоактивно загрязненных поверхностей земли, зданий, сооружений и др. (гамма-, бета- и рентгеновское излучение);

Ø внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов питания и воды (аль­фа- и бета-излучение);

Ø контактное облучение за счет загрязнения радиоактивными веществами кожных покровов.

Одна из особенностей радиоактивного загрязнения заключается в том, что его невозможно обнаружить без специальных дозиметрических приборов, т. к. радиация не обладает ни цветом, ни запахом, ни вкусом.

Радиоактивные излучения способны проникать через различные толщи мате­риала и вызывать нарушения всех жизненно важных процессов в орг анизме че­ловека (кроветворения, работы нервной системы, желудочно-кишечного тракта). Человек в момент воздействия радиации не получает телесных повреждений и не испытывает болевых ощущений, однако в результате облучения у пораженного позже может развиться лучевая болезнь.

После аварии наибольшую опасность представляет внешнее облучение, которое проникает в организм через покровы кожи и органы дыхания. Через 2-3 месяца после аварии большую опасность представляет внутреннее облучение, которое проникает в организм через желудочно-кишечный тракт с продуктами питания и водой. Внутреннее облучение наиболее опасно для человека, т. к. внутренние органы защитить невозможно.

Ионизирующее облучение:

а-(альфа)-иэлучение - это поток частиц, являющихся ядрами атома гелия. Это излучение распространяется в средах прямолинейно со скоростью 20 ООО км/с. Альфа-частицы обладают большой массой, быстро теряют свою энергию и по­этому имеют незначительный пробег: в воздухе - до 11 см, биологических тка­нях - 30-130 мкм, алюминии - 16-67 мкм. Несмотря на то, что альфа-частицы обладают наименьшей проникающей способностью, они имеют наибольшую по­ражающую способность;

р-(бета)-излучение - это поток электронов, обладающих большей проникаю­щей способностью и меньшей поражающей способностью, чем альфа-излучение. ()ни возникают в ядрах атомов при радиоактивном распаде и сразу же излучаются or |уда со скоростью, близкой к скорости света. Проникающая способность бета- Излучения в воздухе составляет несколько метров, в биологических тканях - не­сколько сантиметров, в алюминии - несколько миллиметров;

рентгеновское излучение - электромагнитное излучение высокой частоты и короткой длиной волны, возникает при бомбардировке веществ потоком элект­ронов. Обладает большой проникающей способностью;

у-(гамма)-излучение - это поток квантовой энергии, распространяющейся со скоростью света. Обладает большей проникающей способностью и меньшей по­ражающей способностью, чем рентгеновское излучение.

Й учебный вопрос.

Радиационно-опасные объекты (РОО)

Под радиационно-опасными понимаются объекты, использующие в технологических процессах или имеющие на хранении радиоактивные вещества, которые в случае аварии вызывают опасные для здоровья людей и окружающей среды загрязнения.

Радиационная авария - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

К радиационно-опасным объектам относятся:

атомные станции различного назначения;

предприятия по регенерации отработанного топлива и

временному хранению радиоактивных отходов;

научно-исследовательские организации, имеющие

исследовательские реакторы или ускорители частиц; морские

суда с энергетическими установками;

хранилища ядерных боеприпасов; полигоны, где проводятся

испытания ядерных зарядов.

Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем за одно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

В Российской Федерации имеется 33 энергоблока на 10 АЭС, 113 исследовательских ядерных установок, 13 промышленных предприятий топливного цикла, а также около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

Для обеспечения надежной работы АЭС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности. Например, на АЭС с водно-паровым энергетическим реактором имеется пять барьеров безопасности. Это независимые друг от друга препятствия на пути ионизирующих излучений от топлива до окружающей среды. В результате ослабления ионизирующих излучений барьерами безопасности облучение населения, проживающего вблизи от АЭС типа ВПЭР, при ее безаварийной работе не превышает 0,2 мбэра в год.

В соответствии с вышеизложенным Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99) на основании следующих нормативных документов: Федеральный закон "О радиационной безопасности населения" № 3-ФЗ от 09.01.96 г.; Федеральный закон "О санитарно-эпидемиологическом благополучии населения" № 52-ФЗ от 30.03.99 г.; Федеральный закон об использовании атомной энергии" № 170-ФЗ от 21.11.95г.; Закон РСФСР "Об охране окружающей природной среды" № 2060-1 от 19.12.91 г.; Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасности источников излучений, принятые совместно: Продовольственной и сельскохозяйственной организацией Объединенных Нации; Международным агентством по атомной энергии; Международной организацией труда; Агентством по ядерной энергии организации экономического сотрудничества и развития; Панамериканской организацией здравоохранения и Всемирной организацией здравоохранения (серия безопасности № 115), 1996 г.; Общие требования к построению, изложению и оформлению санитарно-гигиенических и эпидемиологических нормативных и методических документов. Руководство Р 1.1.004-94. Издание официальное. М. Госкомсанэпиднадзор России. 1994 г.

За всю историю атомной энергетики (с 1954 г.) во всем мире было зарегистрировано более 300 аварийных ситуаций (за исключением СССР). В СССР, кроме аварии на ЧАЭС, другие аварии были неизвестны. Наиболее крупные выбросы РВ приводятся в таблице:

Таблица № 1. Выбросы радиоактивных веществ, представляющие угрозу для населения

Год, место

Активность, МКи

Последствия

1957,Южный Урал

Взрыв хранилища

с высокоактивными отходами

Загрязнено 235 тыс. км. кв. территории

1957,Англия,

Уиндскейл

Сгорание графита во время отжига и повреждения твэлов

РА облако распро-странилось на север до Норвегии и на запад до Вены

Произведено 1820 ядерных взрывов; из них 483 в атмосфере

Загрязнение атмосферы и по следу облака

Авария спутника с ЯЭУ

70% активности выпало в Южном полушарии

1966,Испания

Разброс ядерного топлива двух водородных бомб

Точные сведения отсутствуют

Срыв предохранительной мембраны первого контура тепло-носителя

Выброс 22,7 тыс. тонн загрязненной воды, 10% РА веществ выпало в атмосферу

Чернобыль

Взрыв и пожар четвертого блока

Несоизмеримы со всеми предыдущими



 

Возможно, будет полезно почитать: