Расчет коэффициента детерминации. Формула коэффициента детерминации, что измеряет

Как уж ранее отмечалось, в случае линейной регрессии основными показателями качества построенного уравнения регрессии служат коэффициент детерминации и критерий Фишера. Использование этих показателей обосновывается в теории дисперсионного анализа. Здесь рассматриваются следующие суммы:

· – общая сумма квадратов отклонений зависимой переменной от средней (TSS );

· – сумма квадратов, обусловленная регрессией (RSS );

· – сумма квадратов, характеризующая влияние неучтенных факторов (ESS ).

Напомним, что для моделей, линейных относительно параметров, выполняется следующее равенство

Исходя из этого равенства, вводился коэффициент детерминации

. (6.22)

В силу определения R 2 принимает значения между 0 и 1, . Чем ближе R 2 к единице, тем лучше регрессия аппроксимирует эмпирические данные , тем теснее наблюдения примыкают к линии регрессии. Если R 2 =1, то эмпирические точки (x i ,y i) лежат на линии регрессии и между переменными Y и X существует функциональная зависимость . Если R 2 =0, то вариация зависимой переменной полностью обусловлена воздействием неучтённых в модели переменных . Величина R 2 показывает, какая часть (доля) вариации зависимой переменной обусловлена вариацией объясняющей переменной .

Однако для моделей, нелинейных относительно параметров, равенство (6.21) не выполняется , т.е. . В связи с этим может получиться, что или . Это означает, что коэффициент детерминации, определяемый по формулам (6.22), может быть больше единицы или меньше нуля. Следовательно, R 2 для нелинейных моделей не является вполне адекватной характеристикой качества построенного уравнения регрессии.

На практике обычно в качестве коэффициента детерминации принимается величина

Эта величина имеет тот же самый смысл, что и для линейной модели, но при его использовании нужно учитывать все рассмотренные выше оговорки.

Замечание. Величину R 2 для нелинейных моделей иногда называют индексом детерминации , корень из данной величины R называют индексом корреляции.

Если после преобразования нелинейное уравнение регрессии принимает форму линейного парного уравнения регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции , где z – преобразованная величина независимой переменной, например z =1/x или z =lnx .



Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с результативным признаком. В этом случае линейный коэффициент корреляции по преобразованным значениям даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции.

Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции ( или ). Несмотря на близость значений R yx и или R yx и , следует помнить, что эти значения не совпадают. Это связано с тем, что для нелинейной регрессии , в отличие от линейной регрессии .

Коэффициент детерминации можно сравнивать с квадратом коэффициента корреляции для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически, если величина ( – ) не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия этих показателей, вычисленных по одним и тем же исходным данным.

Коэффициент детерминации можно использовать при сравнении двух альтернативных уравнений регрессии. Можно выбрать наилучшую из них по максимальному значению коэффициента детерминации. При рассмотрении альтернативных моделей с одним и тем же определением зависимой переменной предложенный способ выбора достаточно проста и очевидна. Однако нельзя сравнивать, например, линейную и логарифмические модели. Значения lnY значительно меньше соответствующих значений Y , поэтому неудивительно, что остатки также значительно меньше, но это ничего не решает. Величина R 2 безразмерна, однако в двух уравнениях она относится к разным понятиям. В одном уравнении она измеряет объясненную регрессией долю дисперсии Y , а в другом – объясненную регрессией долю дисперсии lnY . Если для одной модели коэффициент R 2 значительно больше, чем для другой, то можно сделать оправданный выбор без особых раздумий, однако, если значения R 2 для двух моделей приблизительно равны, то проблема выбора существенно усложняется.

Более подробно проблемы спецификации рассматриваются в дополнении 3.

Отметим, что критерий Фишера можно применять только для нормальной линейной классической регрессионной модели . Однако в общем случае, в первую для моделей нелинейных по параметрам, критерий Фишера применять нельзя! Иногда критерий Фишера применяют для линеаризованных моделей, однако здесь следует помнить, что исходное и линеаризованное уравнения не одно и то же, т.е. здесь нужны серьезные оговорки.

Более подробно использования критерия Фишера для линеаризированных моделей смотрите в дополнении 2.

ПРИМЕРЫ

Пример 6.1. Вычислить полулогарифмическую функцию регрессии зависимости доли расходов на товары длительного пользования в общих расходах семьи (Y , %) от среднемесячного дохода семьи (X , тыс. $ ):

X
Y 13,4 15,4 16,5 18,6 19,3

Решение. Используем стандартные процедуры линейного регрессионного анализа. Для расчетов воспользуемся данными таблицы 6.1:

Табл. 6.1.

x u= lnx y uy u 2 y 2 A
9,88 0,12 1,241 0,0154
0,693 13,4 9,29 0,48 179,56 13,43 -0,03 0,232 0,0010
1,099 15,4 16,92 1,21 237,16 15,51 -0,11 0,718 0,0122
1,386 16,5 22,87 1,92 272,25 16,99 -0,49 2,946 0,2363
1,609 18,6 29,94 2,59 345,96 18,13 0,47 2,524 0,2203
1,792 19,1 34,22 3,21 364,81 19,07 0,03 0,180 0,0012
Итого 6,579 113,24 9,41 1499,74 7,840 0,4864
Среднее значение 3,5 1,097 15,5 18,87 1,57 249,96 1,307

В соответствии с формулами (6.103) вычисляем

, .

В результате, получим уравнение полулогарифмической регрессии:

Подставляя в уравнение (6.24) фактические значения x i , получаем теоретические значения результата . Используя программу Excel ,

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,9958
R -квадрат 0,9916
Нормированный R -квадрат 0,9896
Стандартная ошибка 0,3487
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 57,75 57,75 474,93 0,000026
Остаток 0,49 0,12
Итого 58,24
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 9,8759 0,2947 33,51 0,0000047 9,0576 10,6942
Переменная lnX 5,1289 0,2353 21,79 0,0000262 4,4755 5,7823

Из этих данных видно, в частности, что все коэффициенты регрессии статистически значимы. Оценим качество уравнения регрессии. Рассчитаем среднюю ошибку аппроксимации

,

т.е. с точки зрения этого показателя уравнение регрессии подобрано очень хорошо.

Вычислим теперь средний коэффициент эластичности

Таким образом, при возрастании среднемесячного дохода семьи на 1% доля расходов на товары длительного пользования в общих расходах семьи возрастет на 0,25% .

Коэффициент детерминации для данной модели совпадает с квадратом коэффициента корреляции . По данным таблицы 6.3 получаем

И .

Коэффициент детерминации показывает, что уравнение регрессии на 99% объясняет вариацию значений признака y , т.е. с точки зрения коэффициента детерминации построенное уравнение регрессии очень хорошо описывает исходные данные.

Для оценки качества данной модели можно использовать критерий Фишера (при предположении, что мы имеем дело с нормальной классической линейной моделью). В этом случае получаем

, .

Поскольку F набл >F крит , то гипотеза о случайной природе оцениваемых параметров отклоняется и признается их статистическая значимость и надежность, т.е. построенное уравнение регрессии признается статистически значимым. â

Пример 6.2. Имеются данные о просроченной задолженности по заработной плате за 9 месяцев 2000 г. по Санкт-Петербургу.

. Оцените качество построенной регрессии. б) Оцените МНК коэффициенты обратной модели , линеаризуя модель. Оцените качество построенной регрессии. в) Оцените МНК коэффициенты обратной модели , используя численные методы (метод Маркуардта)? г) Проанализируйте полученные результаты.

Решение. а) Используя стандартные процедуры линейного регрессионного анализа (считая, как обычно, t =1 для января 2000 г.), получим:

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,846
R -квадрат 0,716
Нормированный R -квадрат 0,675
Стандартная ошибка 12,233
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 2640,07 2640,07 17,64 0,00403
Остаток 1047,58 149,65
Итого 3687,64
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 410,12 8,89 46,15 5,87E-10 389,11 431,14
Переменная X 1 -6,63 1,58 -4,20 4,03E-03 -10,37 -2,90

,



причём все коэффициенты регрессии значимы. Коэффициент детерминации равен , т.е. линейная модель удовлетворительно описывает исходные данные. На графике поле корреляции и линейное уравнение регрессии будут выглядеть следующим образом:

В соответствии с построенным уравнением просроченная задолженность по заработной плате за 9 месяцев 2000 г. ежемесячно снижалась на 6,6 млн. руб. Расчётное значение просроченной задолженности за декабрь 1999 г. составило 410,1 млн. руб. Точечный прогноз за октябрь составила: млн. руб.

Оценим точность прогноза. В соответствии с линейным регрессионным анализом, находим предельную ошибку индивидуального прогноза (на уровне значимости a=0,05):

.

Точность прогноза составила .

б) Линеаризуем модель, полагая v =1/y . Составляем расчётную таблицу.

Месяцы t y v= 1/y tv t 2 v 2
Январь 387,6 0,00258 0,0026 0,0000067 0,00247 0,0001134 0,00000001286
Февраль 399,9 0,00250 0,0050 0,0000063 0,00252 -0,0000145 0,00000000021
Март 404,0 0,00248 0,0074 0,0000061 0,00256 -0,0000885 0,00000000783
Апрель 383,1 0,00261 0,0104 0,0000068 0,00261 -0,0000020 0,00000000000
Май 376,9 0,00265 0,0133 0,0000070 0,00266 -0,0000076 0,00000000006
Июнь 377,7 0,00265 0,0159 0,0000070 0,00271 -0,0000618 0,00000000382
Июль 358,1 0,00279 0,0195 0,0000078 0,00276 0,0000345 0,00000000119
Август 371,9 0,00269 0,0215 0,0000072 0,00281 -0,0001177 0,00000001385
Сентябрь 333,4 0,00300 0,0270 0,0000090 0,00286 0,0001442 0,00000002081
Итого: 3392,6 0,02395 0,1227 0,0000639 0,02395 0,00000006063
Среднее 376,96 0,002661 0,0136 31,67 0,0000071

Вычисляем

В результате, получим уравнение обратной регрессии:

.

Используя программу Excel получим следующие данные (на уровне значимости a=0,05):

ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 1,41557E-07 1,41557E-07 16,34 0,00492
Остаток 6,06323E-08 8,66176E-09
Итого 2,02189E-07
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 0,002418 6,76E-05 35,76 3,47E-09 0,00226 0,00258
Переменная lnX 0,0000486 1,20E-05 4,04 0,00492 2,02E-05 7,70E-05

R 2 =0,7). Этот вывод подтверждается и с точки зрения критерия Фишера (отметим, что для линеаризованных моделей, при определённых оговорках, можно применить критерий Фишера). Однако в рассматриваемом случае МНК применялся не к y , а к обратным значениям 1/y

t y A
387,6 405,42 -17,821 317,58 113,30 810,26 4,60
399,9 397,59 2,309 5,33 526,45 425,83 0,58
404,0 390,06 13,942 194,37 731,40 171,68 3,45
383,1 382,81 0,294 0,09 37,75 34,22 0,08
376,9 375,82 1,082 1,17 0,00 1,29 0,29
377,7 369,08 8,620 74,30 0,55 62,02 2,28
358,1 362,58 -4,480 20,07 355,53 206,64 1,25
371,9 356,31 15,595 243,19 25,56 426,43 4,19
333,4 350,24 -16,844 283,71 1897,09 713,52 5,05
3392,6 2,696 1139,81 3687,64 2851,90 21,77
376,96 2,42

.

Отметим, что для нелинейных моделей, оцененных МНК, эта сумма всегда равна нулю. Следовательно, оценки исходной нелинейной модели будут смещёнными .

Отсюда, в частности, следует, что равенство не выполняется. Действительно,

В связи с этим, для коэффициента детерминации можно получить два разных значения:

, или .

Это означает, что коэффициент детерминации для нелинейных моделей не всегда является адекватной характеристикой. Отметим, что в компьютерных программах для вычисления коэффициента детерминации в основном используют второе равенство.

Сделаем прогноз по полученному уравнению обратной модели и оценим его точность. Точечный прогноз за октябрь составит:

Млн. руб.

Оценим точность прогноза. В соответствии с линейным регрессионным анализом, находим предельную ошибку индивидуального прогноза по линеаризированному уравнению (на уровне значимости a=0,05):

В результате, доверительный интервал для прогнозного значения будет иметь вид

Точность прогноза для преобразованной переменной v составляет 9,4%. Однако мы имеем дело нес обратными величинами v =1/y , а с y . Переходя к исходной переменной, получим следующий доверительный интервал

.

Точность прогноза для непреобразованной переменной y составляет уже 18,9%. Этот результат показывает, что исходное и преобразованное уравнения дают, вообще говоря, разный результат.

в) Оценим МНК коэффициенты обратной модели

,

используя численные методы (метод Левенберга-Маркуардта). Для этого воспользуемся программой STATISTIKA. Программа выдаёт следующие результаты.

Уравнение регрессии имеет вид

с коэффициентом детерминации R 2 =0,6947. Для сравнений приведем результаты вычислений.

Видно, что численные методы дают вполне удовлетворительный результат. Более того, они позволяют провести также и некоторый статистический анализ полученной модели (хотя и не такой полный по-сравнению с линейными моделями). Таким образом, как показывает данный пример, линеаризация не всегда даёт более лучший результат по-сравнению с численными методами.

г) Сделаем некоторые выводы. Отметим, что коэффициенты детерминации для обеих моделей (линейной и обратной) практически не отличаются друг от друга: R 2 =0,716 для линейной модели и R 2 =0,691 для обратной модели. Поэтому обе модели с точки зрения коэффициента детерминации равноценны. Однако при оценке точности прогноза лучше использовать, как мы видели, линейную модель. Таким образом, использование обратной модели для интерпретации имеющихся результатов не совсем оправдано. С точки зрения статистических свойств в данном случае лучше использовать линейную модель. â

Пример 6.3. Имеются данные о зависимости расхода топлива (Y , г /на т·км ) от мощности двигателя грузовых автомобилей общего назначения (X , л.с. ):

X
Y

а) Оцените МНК коэффициенты линейной модели . Оцените качество построенной регрессии. б) Оцените МНК коэффициенты степенной модели , линеаризуя модель. Оцените качество построенной регрессии.

Решение. а) Используя стандартные процедуры линейного регрессионного анализа, получим:

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,8378
R -квадрат 0,7019
Нормированный R -квадрат 0,6688
Стандартная ошибка 12,8383
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 3493,3 3493,3 21,19 0,001284
Остаток 1483,4 164,8
Итого 4976,7
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 103,866 9,993 10,39 0,0000 81,261 126,471
Переменная X -0,3388 0,0736 -4,60 0,0013 -0,5053 -0,1723

Таким образом, линейное уравнение регрессии будет иметь вид

,

причём все коэффициенты регрессии значимы. Коэффициент детерминации равен , т.е. линейная модель удовлетворительно описывает исходные данные.

На графике поле корреляции и линейное уравнение регрессии будут выглядеть следующим образом:

4,248 4,477 19,022 18,050 20,047 4,4714 0,0059 0,00003 4,248 4,431 18,824 18,050 19,632 4,4714 -0,0406 0,00165 4,317 4,477 19,331 18,641 20,047 4,4119 0,0655 0,00429 4,443 4,331 19,240 19,737 18,755 4,3038 0,0270 0,00073 4,575 4,263 19,501 20,928 18,170 4,1897 0,0730 0,00533 4,745 3,951 18,748 22,514 15,612 4,0427 -0,0914 0,00836 4,787 3,951 18,917 22,920 15,612 4,0059 -0,0547 0,00299 5,011 3,829 19,184 25,106 14,658 3,8132 0,0154 0,00024 5,165 4,143 21,398 26,675 17,166

Используя программу Excel получим следующие данные (на уровне значимости a=0,05):

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,8233
R -квадрат 0,6778
Нормированный R -квадрат 0,6420
Стандартная ошибка 0,2653
Наблюдения
ДИСПЕРСИОННЫЙ АНАЛИЗ
df SS MS F Значимость F
Регрессия 1,3327 1,3327 18,93 0,001847
Остаток 0,6336 0,0704
Итого 1,9663
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y -пересечение 8,141 0,946 8,609 0,0000123 6,002 10,280
Переменная lnX -0,864 0,198 -4,351 0,0018473 -1,313 -0,415

Качество линеаризованного уравнения довольно высокое (R 2 =0,678). Этот вывод подтверждается и с точки зрения критерия Фишера (напомним, что для линеаризованных моделей, при определённых оговорках, можно применить критерий Фишера). Однако в рассматриваемом случае МНК применялся не к y , а к их логарифмам lny , а это существенная разница. Проанализируем исходную, нелинеаризированную, модель.

45,295 -0,705 0,50 89,39 261,13 1,56 39,649 -23,351 545,29 89,39 475,50 58,90 38,696 17,696 313,13 1636,57 517,97 45,73 30,182 -4,818 23,21 699,84 977,95 15,96 -12,909 988,03 5038,18 4267,39 157,85 125,18 61,45 14,35

Из таблицы видно, что для данной модели

.

Следовательно, оценки исходной нелинейной модели будут смещёнными.

Для коэффициента детерминации можно получить два разных значения:

, или .

Это означает, что полученное уравнение достаточно хорошо описывает исходные данные и этот коэффициент выше, чем для коэффициента детерминации линейной регрессии. Хотя средний коэффициент аппроксимации не очень низкий .

Сделаем прогноз по полученному уравнению степенной модели и оценим его точность. При мощности двигателя x =70 л.с. расход топлива на 1 т-км составит

Коэффициент детерминации ( - R-квадрат ) - это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью. Более точно - это единица минус доля необъяснённой дисперсии (дисперсии случайной ошибки модели, или условной по признакам дисперсии зависимой переменной) в дисперсии зависимой переменной. В случае линейной зависимости является квадратом так называемого множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. В частности, для модели линейной регрессии с одним признаком коэффициент детерминации равен квадрату обычного коэффициента корреляции между и .

Определение и формула

Истинный коэффициент детерминации модели зависимости случайной величины от признаков определяется следующим образом:

где - условная (по признакам ) дисперсия зависимой переменной (дисперсия случайной ошибки модели).

В данном определении используются истинные параметры, характеризующие распределение случайных величин. Если использовать выборочную оценку значений соответствующих дисперсий, то получим формулу для выборочного коэффициента детерминации (который обычно и подразумевается под коэффициентом детерминации):

- сумма квадратов регрессионных остатков, - общая дисперсия, - соответственно, фактические и расчетные значения объясняемой переменной, - выборочное вреднее.

В случае линейной регрессии с константой , где - объяснённая сумма квадратов, поэтому получаем более простое определение в этом случае. Коэффициент детерминации - это доля объяснённой дисперсии в общей :

.

Необходимо подчеркнуть, что эта формула справедлива только для модели с константой, в общем случае необходимо использовать предыдущую формулу.

Интерпретация

Недостатки и альтернативные показатели

Основная проблема применения (выборочного) заключается в том, что его значение увеличивается (не уменьшается) от добавления в модель новых переменных, даже если эти переменные никакого отношения к объясняемой переменной не имеют. Поэтому сравнение моделей с разным количеством признаков с помощью коэффициента детерминации, вообще говоря, некорректно. Для этих целей можно использовать альтернативные показатели.

Скорректированный (adjusted)

Для того, чтобы была возможность сравнивать модели с разным числом признаков так, чтобы число регрессоров (признаков) не влияло на статистику обычно используется скорректированный коэффициент детерминации , в котором используются несмещённые оценки дисперсий:

который даёт штраф за дополнительно включённые признаки, где - количество наблюдений, а - количество параметров.

Данный показатель всегда меньше единицы, но теоретически может быть и меньше нуля (только при очень маленьком значении обычного коэффициента детерминации и большом количестве признаков), поэтому интерпретировать его как долю объясняемой дисперсии уже нельзя. Тем не менее, применение показателя в сравнении вполне обоснованно.

Для моделей с одинаковой зависимой переменной и одинаковым объемом выборки сравнение моделей с помощью скорректированного коэффициента детерминации эквивалентно их сравнению с помощью остаточной дисперсии или стандартной ошибки модели .

Обобщённый (extended)

В случае отсутствия в линейной множественной МНК регрессии константы свойства коэффициента детерминации могут нарушаться для конкретной реализации . Поэтому модели регрессии со свободным членом и без него нельзя сравнивать по критерию . Эта проблема решается с помощью построения обобщённого коэффициента детерминации , который совпадает с исходным для случая МНК регрессии со свободным членом. Суть этого метода заключается рассмотрении проекции единичного вектора на плоскость объясняющих переменных.

Коэффициент множественной детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.

Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.

Для коэффициента множественной детерминации всегда выполняется неравенство вида:

Следовательно, включение в линейную модель регрессии дополнительной факторной переменной xn не снижает значения коэффициента множественной детерминации.

Коэффициент множественной детерминации может быть определён не только как квадрат множественного коэффициента корреляции, но и с помощью теоремы о разложении сумм квадратов по формуле:

где ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:

TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:

Однако классический коэффициент множественной детерминации не всегда способен определить влияние на качество модели регрессии дополнительной факторной переменной. Поэтому наряду с обычным коэффициентом рассчитывают также и скорректированный (adjusted) коэффициент множественной детерминации, в котором учитывается количество факторных переменных, включённых в модель регрессии:

где n – количество наблюдений в выборочной совокупности;

h – число параметров, включённых в модель регрессии.

При большом объёме выборочной совокупности значения обычного и скорректированного коэффициентов множественной детерминации отличаться практически не будут.

24. Парный регрессионный анализ

Одним из методов изучения стохастических связей между признаками является регрессионный анализ.

Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

выбор формы связи (вида аналитического уравнения регрессии);

оценку параметров уравнения;

оценку качества аналитического уравнения регрессии.

Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.

В случае линейной парной связи уравнение регрессии примет вид:

Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y. Результатом такой оценки является уравнение: , где,- оценки параметров a и b, - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).

Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x).

Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем:

получить такие оценки параметров ,, при которых сумма квадратов отклонений фактических значений результативного признака - yi от расчетных значений – минимальна.

Формально критерий МНК можно записать так:

Проиллюстрируем суть данного метода графически. Для этого построим точечный график по данным наблюдений (xi ,yi, i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

Математическая запись данной задачи:

Значения yi и xi i=1; n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - ,. Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е.

В результате получим систему из 2-ух нормальных линейных уравнений:

Решая данную систему, найдем искомые оценки параметров:

Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм

(возможно некоторое расхождение из-за округления расчетов).

Знак коэффициента регрессии b указывает направление связи (если b>0, связь прямая, если b <0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.

Формально значение параметра а – среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - rx,y. Он может быть рассчитан по формуле:

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если rx, y>0, то связь прямая; если rx, y<0, то связь обратная.

Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице ê rx , y ê =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то rx,y близок к 0.

Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R2yx:

где d 2 – объясненная уравнением регрессии дисперсия y;

e 2- остаточная (необъясненная уравнением регрессии) дисперсия y;

s 2 y - общая (полная) дисперсия y .

Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y, объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y. Коэффициент детерминации R2yx принимает значения от 0 до 1. Соответственно величина 1-R2yx характеризует долю дисперсии y, вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.

При парной линейной регрессии R 2yx=r2 yx.

Сегодня уже все, кто хоть немного интересуется дата майнингом, наверняка слышали про простую линейную регрессию . Про нее уже писали на хабре, а также подробно рассказывал Эндрю Нг в своем известном курсе машинного обучения. Линейная регрессия является одним из базовых и самых простых методов машинного обучения, однако очень редко упоминаются методы оценки качества построенной модели. В этой статье я постараюсь немного исправить это досадное упущение на примере разбора результатов функции summary.lm() в языке R. При этом я постараюсь предоставить необходимые формулы, таким образом все вычисления можно легко запрограммировать на любом другом языке. Эта статья предназначена для тех, кто слышал о том, что можно строить линейную регрессию, но не сталкивался со статистическими процедурами для оценки ее качества.

Модель линейной регрессии

Итак, пусть есть несколько независимых случайных величин X1, X2, ..., Xn (предикторов) и зависящая от них величина Y (предполагается, что все необходимые преобразования предикторов уже сделаны). Более того, мы предполагаем, что зависимость линейная, а ошибки рапределены нормально, то есть

Где I - единичная квадратная матрица размера n x n.

Итак, у нас есть данные, состоящие из k наблюдений величин Y и Xi и мы хотим оценить коэффициенты. Стандартным методом для нахождения оценок коэффициентов является метод наименьших квадратов . И аналитическое решение, которое можно получить, применив этот метод, выглядит так:

где b с крышкой - оценка вектора коэффициентов, y - вектор значений зависимой величины, а X - матрица размера k x n+1 (n - количество предикторов, k - количество наблюдений), у которой первый столбец состоит из единиц, второй - значения первого предиктора, третий - второго и так далее, а строки соответствуют имеющимся наблюдениям.

Функция summary.lm() и оценка получившихся результатов

Теперь рассмотрим пример построения модели линейной регрессии в языке R:
> library(faraway) > lm1<-lm(Species~Area+Elevation+Nearest+Scruz+Adjacent, data=gala) > summary(lm1) Call: lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent, data = gala) Residuals: Min 1Q Median 3Q Max -111.679 -34.898 -7.862 33.460 182.584 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.068221 19.154198 0.369 0.715351 Area -0.023938 0.022422 -1.068 0.296318 Elevation 0.319465 0.053663 5.953 3.82e-06 *** Nearest 0.009144 1.054136 0.009 0.993151 Scruz -0.240524 0.215402 -1.117 0.275208 Adjacent -0.074805 0.017700 -4.226 0.000297 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 60.98 on 24 degrees of freedom Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171 F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
Таблица gala содержит некоторые данные о 30 Галапагосских островах. Мы будем рассматривать модель, где Species - количество разных видов растений на острове линейно зависит от нескольких других переменных.

Рассмотрим вывод функции summary.lm().
Сначала идет строка, которая напоминает, как строилась модель.
Затем идет информация о распределении остатков: минимум, первая квартиль, медиана, третья квартиль, максимум. В этом месте было бы полезно не только посмотреть на некоторые квантили остатков, но и проверить их на нормальность, например тестом Шапиро-Уилка.
Далее - самое интересное - информация о коэффициентах. Здесь потребуется немного теории.
Сначала выпишем следующий результат:

при этом сигма в квадрате с крышкой является несмещенной оценкой для реальной сигмы в квадрате. Здесь b - реальный вектор коэффициентов, а эпсилон с крышкой - вектор остатков, если в качестве коэффициентов взять оценки, полученные методом наименьших квадратов. То есть при предположении, что ошибки распределены нормально, вектор коэффициентов тоже будет распределен нормально вокруг реального значения, а его дисперсию можно несмещенно оценить. Это значит, что можно проверять гипотезу на равенство коэффициентов нулю, а следовательно проверять значимость предикторов, то есть действительно ли величина Xi сильно влияет на качество построенной модели.
Для проверки этой гипотезы нам понадобится следующая статистика, имеющая распределение Стьюдента в том случае, если реальное значение коэффициента bi равно 0:

где
- стандартная ошибка оценки коэффициента, а t(k-n-1) - распределение Стьюдента с k-n-1 степенями свободы.

Теперь все готово для продолжения разбора вывода функции summary.lm().
Итак, далее идут оценки коэффициентов, полученные методом наименьших квадратов, их стандартные ошибки, значения t-статистики и p-значения для нее. Обычно p-значение сравнивается с каким-нибудь достаточно малым заранее выбранным порогом, например 0.05 или 0.01. И если значение p-статистики оказывается меньше порога, то гипотеза отвергается, если же больше, ничего конкретного, к сожалению, сказать нельзя. Напомню, что в данном случае, так как распределение Стьюдента симметричное относительно 0, то p-значение будет равно 1-F(|t|)+F(-|t|), где F - функция распределения Стьюдента с k-n-1 степенями свободы. Также, R любезно обозначает звездочками значимые коэффициенты, для которых p-значение достаточно мало. То есть, те коэффициенты, которые с очень малой вероятностью равны 0. В строке Signif. codes как раз содержится расшифровка звездочек: если их три, то p-значение от 0 до 0.001, если две, то оно от 0.001 до 0.01 и так далее. Если никаких значков нет, то р-значение больше 0.1.

В нашем примере можно с большой уверенностью сказать, что предикторы Elevation и Adjacent действительно с большой вероятностью влияют на величину Species, а вот про остальные предикторы ничего определенного сказать нельзя. Обычно, в таких случаях предикторы убирают по одному и смотрят, насколько изменяются другие показатели модели, например BIC или Adjusted R-squared, который будет разобран далее.

Значение Residual standart error соответствует просто оценке сигмы с крышкой, а степени свободы вычисляются как k-n-1.

А теперь самая важные статистики, на которые в первую очередь стоит смотреть: R-squared и Adjusted R-squared:

где Yi - реальные значения Y в каждом наблюдении, Yi с крышкой - значения, предсказанные моделью, Y с чертой - среднее по всем реальным значениям Yi.

Начнем со статистики R-квадрат или, как ее иногда называют, коэффициента детерминации. Она показывает, насколько условная дисперсия модели отличается от дисперсии реальных значений Y. Если этот коэффициент близок к 1, то условная дисперсия модели достаточно мала и весьма вероятно, что модель неплохо описывает данные. Если же коэффициент R-квадрат сильно меньше, например, меньше 0.5, то, с большой долей уверенности модель не отражает реальное положение вещей.

Однако, у статистики R-квадрат есть один серьезный недостаток: при увеличении числа предикторов эта статистика может только возрастать. Поэтому, может показаться, что модель с большим количеством предикторов лучше, чем модель с меньшим, даже если все новые предикторы никак не влияют на зависимую переменную. Тут можно вспомнить про принцип бритвы Оккама . Следуя ему, по возможности, стоит избавляться от лишних предикторов в модели, поскольку она становится более простой и понятной. Для этих целей была придумана статистика скорректированный R-квадрат. Она представляет собой обычный R-квадрат, но со штрафом за большое количество предикторов. Основная идея: если новые независимые переменные дают большой вклад в качество модели, значение этой статистики растет, если нет - то наоборот уменьшается.

Для примера рассмотрим ту же модель, что и раньше, но теперь вместо пяти предикторов оставим два:
> lm2<-lm(Species~Elevation+Adjacent, data=gala) > summary(lm2) Call: lm(formula = Species ~ Elevation + Adjacent, data = gala) Residuals: Min 1Q Median 3Q Max -103.41 -34.33 -11.43 22.57 203.65 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.43287 15.02469 0.095 0.924727 Elevation 0.27657 0.03176 8.707 2.53e-09 *** Adjacent -0.06889 0.01549 -4.447 0.000134 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 60.86 on 27 degrees of freedom Multiple R-squared: 0.7376, Adjusted R-squared: 0.7181 F-statistic: 37.94 on 2 and 27 DF, p-value: 1.434e-08
Как можно увидеть, значение статистики R-квадрат снизилось, однако значение скорректированного R-квадрат даже немного возросло.

Теперь проверим гипотезу о равенстве нулю всех коэффициентов при предикторах. То есть, гипотезу о том, зависит ли вообще величина Y от величин Xi линейно. Для этого можно использовать следующую статистику, которая, если гипотеза о равенстве нулю всех коэффициентов верна, имеет



 

Возможно, будет полезно почитать: