Вредная доза радиации для человека. Опасные и безопасные дозы радиоактивного излучения для организма человека

Человеческий организм поглощает энергию ионизирующих излучений, причем от количества поглощенной энергии зависит степень лучевых поражений. Для характеристики поглощенной энергии ионизирующего излучения единицей массы вещества используется понятие поглощенная доза.

Поглощенная доза – это количество энергии ионизирующего излучения, поглощенное облучаемым телом (тканями организма) и рассчитанной на единицу массы этого вещества. Единица поглощенной дозы в Международной системе единиц (СИ) – грей (Гр).

1 Гр = 1 Дж/кг

Для оценки еще используют и внесистемную единицу – Рад. Рад – образовано от английского «radiationabsorbeddoze» – поглощенная доза излучения. Это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0.01 Дж энергии (или 1 г массы поглощает 100 эрг).

1 Рад = 0.01 Дж/кг 1 Гр = 100 Рад

    Экспозиционная доза

Для оценки радиационной обстановки на местности, в рабочем или жилом помещениях, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозу облучения. В системе СИ единица экспозиционной дозы – кулон на килограмм (1 Кл/кг).

На практике чаще используют внесистемную единицу – рентген (Р). 1 рентген – доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2.08 х 10 9 пар ионов (или в 1 г воздуха – 1.61 х 10 12 пар ионов).

1 Р = 2.58 х 10 -3 Кл/кг

Поглощенной дозе 1 Рад соответствует экспозиционная доза, примерно равная 1 рентгену: 1 Рад = 1 Р

    Эквивалентная доза

При облучении живых организмов возникают различные биологические эффекты, разница между которыми при одной и той же поглощенной дозе объясняется разными видами облучения.

Для сравнения биологических эффектов, вызываемых любыми ионизирующими излучениями, с эффектами от рентгеновского и гамма-излучения, вводится понятие об эквивалентной дозе . В системе СИ единица эквивалентной дозы – зиверт (Зв). 1 Зв = 1 Дж/кг

Существует также внесистемная единица эквивалентной дозы ионизирующего излучения – бэр (биологический эквивалент рентгена). 1 бэр – доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

1 бэр = 1 Р 1 Зв = 100 бэр

Коэффициент, показывающий, во сколько раз оцениваемый вид излучения биологически опаснее, чем рентгеновское или гамма-излучение при одинаковой поглощенной дозе, называется коэффициентом качества излучения (К).

Для рентгеновского и гамма-излучения К=1.

1 Рад х К = 1 бэр 1 Гр х К = 1 Зв

При прочих равных условиях доза ионизирующего излучения тем больше, чем больше время облучения, т.е. доза накапливается со временем. Доза, отнесенная к единице времени, называется мощностью дозы. Если мы говорим, что мощность экспозиционной дозы гамма-излучения составляет 1 Р/ч, то это значит, что за 1 час облучения человек получит дозу, равную 1 Р.

Активность радиоактивного источника (радионуклида) – это физическая величина, характеризующая число радиоактивных распадов в единицу времени. Чем больше радиоактивных превращений происходит в единицу времени, тем выше активность. В системе Си за единицу активности принят беккерель (Бк) - количество радиоактивного вещества, в котором происходит 1 распад за 1 секунду.

Другая единица радиоактивности – кюри. 1 кюри – активность такого количества радиоактивного вещества, в котором происходит 3.7 х 10 10 распадов в секунду.

Время, в течение которого число атомов данного радиоактивного вещества уменьшается вследствие распада вдвое называется периодом полураспада . Период полураспада может меняться в широких пределах: для урана-238 (U) – 4.47 млр. лет; урана-234 – 245 тыс. лет; радия-226 (Ra) – 1600 лет; йода-131 (J) – 8 суток; радона-222 (Rn) – 3.823 суток; полония-214 (Po) – 0.000164 сек.

Среди долгоживущих изотопов, выброшенных в атмосферу в результате взрыва АЭС в Чернобыле, есть стронций-90 и цезий-137, периоды полураспада которых около 30 лет, поэтому зона Чернобыльской АЭС еще многие десятилетия будет непригодна для нормальной жизни.

КОЭФФИЦИЕНТЫ РАДИАЦИОННОГО РИСКА

Следует учитывать, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения органов и тканей следует учитывать с разными коэффициентами. Принимая коэффициент радиационного риска всего организма в целом за единицу, для разных тканей и органов коэффициенты радиационного риска будут следующие:

0.03 – костная ткань; 0.03 – щитовидная железа;

0.12 – легкие; 0.12 – красный костный мозг;

0.15 – молочная железа; 0.25 – яичники или семенники;

0.30 – другие ткани.

ДОЗЫ ОБЛУЧЕНИЯ, ПОЛУЧАЕМЫЕ ЧЕЛОВЕКОМ

С ионизирующими излучениями население в любом регионе земного шара встречается ежедневно. Это, прежде всего, так называемый радиационный фон Земли, который складывается из:

    космического излучения, приходящего на Землю из Космоса;

    излучения от находящихся в почве, строительных материалах, воздухе и воде естественных радиоактивных элементов;

    излучения от природных радиоактивных веществ, которые с пищей и водой попадают внутрь организма, фиксируются тканями и сохраняются в теле человека.

Кроме того, человек встречается с искусственными источниками излучения, включая радиоактивные нуклиды (радионуклиды), созданные руками человека и применяемые в народном хозяйстве.

В среднем доза облучения от всех естественных источников ионизирующего излучения составляет в год около 200 мР, хотя это значение может колебаться в разных регионах земного шара от 50 до 1000 мР/год и более (табл. 1). Доза, получаемая в результате космического излучения, зависит от высоты над уровнем моря; чем выше над уровнем моря, тем больше годовая доза.

Таблица 1

Природные источники ионизирующего излучения

Источники

Средняя годовая доза

Вклад в дозу,

1. Космос (излучение на уровне моря)

2. Земля (грунт, вода, стройматериалы)

3. Радиоактивные элементы, содержащиеся в тканях тела человека (К, С и др.)

4. Другие источники

Средняя суммарная годовая доза

Искусственные источники ионизирующего излучения (табл. 2):

    медицинское диагностическое и лечебное оборудование;

    люди, постоянно пользующиеся самолетом, дополнительно подвергаются незначительному облучению;

    атомные и тепловые электростанции (доза зависит от близости их расположения);

    фосфорные удобрения;

Строения из камня, кирпича, бетона, дерева – плохая вентиляция в помещениях может увеличить дозу облучения, обусловленную вдыханием радиоактивного газа радона, который образуется при естественном распаде радия, содержащегося во многих горных породах и стройматериалах, а также в почве. Радон – невидимый, не имеющий вкуса и запаха тяжелый газ (тяжелее воздуха в 7.5 раз) и др.

Каждый житель Земли на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр.

Считается, что безопасно для человека набрать за всю свою жизнь дозу облучения, не превышающую 35 бэр. При дозах облучения в 10 бэр не наблюдается каких-либо изменений в органах и тканях организма человека. При однократном облучении дозой 25-75 бэр клинически определяются кратковременные незначительные изменения состава крови.

При облучении дозой более 100 бэр наблюдается развитие лучевой болезни:

100 – 200 бэр – Iстепень (легкая);

200 – 400 бэр – IIстепень (средняя);

400 – 600 бэр – IIIстепень (тяжелая);

более 600 бэр – IVстепень (крайне тяжелая).

В я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.

В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.

Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 - 10 мЗв, а за сутку, соответственно 0,004 - 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.

Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (мили зиверта) радиации, что вполне даже соответствует норме.

Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.

Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год - считается абсолютно безопасной нормальной дозой радиационного фона.

20 мЗв/год - предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.

150 мЗв/год - увеличивает вероятность возникновения онкологических заболеваний.

250 мЗв - после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.

Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.

До 0,01 мЗв - эту дозу можно не учитывать.

Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв , такая работа относится к радиационно опасным и предполагает ношение дозиметра.

До 100 мЗв - допустимое разовое (!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.

Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.

Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.

1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем - тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.

После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).

1,5-2,5 Гр (1500-2500 мЗв) - наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй - высок риск летального исхода.

2,5-4 Гр (2500-4000 мЗв) - возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы - вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.

Смертельные дозы проникающей радиации:

3-4 Гр (3000-4000 мЗв) - повреждение костного мозга, в течение месяца после облучения смертельный исход возможен у 50% облученных (без медицинского вмешательства).

4-7 Гр (4000-7000 мЗв) - развивается тяжелая форма лучевой болезни и высока смертность.

Свыше 7 Гр (7000 мЗв) - крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.

10Гр (10 зВ) - смерть в течение 2-3 недель.

15 Гр - 1-5 суток и всё.

Таким образом, накопленная эквивалентная эфективная доза является числом "показательным ". Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель "предсказательный ". Он называется мощностью дозы эквивалентного эфективного облучения . Он тоже измеряется в зивертах/час, но показывает «будущее».

На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микро зиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв . Этот показатель является в пределах допустимого фонового излучения.

0,2 мкЗв/час (~20 микрорентген/час) - наиболее безопасный уровень мощности фонового излучения.

0,3 мкЗв/час (~30 мкР/час) - предел безопасного фонового излучения, установленый санитарными нормами в Укранине.

0,5 мкЗв/час (~50 мкР/час) - верхний предел допустимой безопасной мощности дозы фонового излучения.

Сократив время непрерывного нахождения до нескольких часов - люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час , а при времени экспозиции до нескольких десятков минут - относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях - флюорография, небольшие рентгеновские снимки и др.).

В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».

Спасибо за внимание.

Радиация представляет собой ионизирующее излучение микроскопических частиц и физических полей. К радиационному излучению не относятся ультрафиолетовые лучи и диапазон видимого света. Способностью ионизировать встречное вещество не обладают радиоволны и микроволны, это не радиация. Смертельная доза для человека не создается искусственно при помощи химических процессов, радиация относится к физическому действию.

Мощность и доза

Мощностью радиационного излучения называется количество ионизации за определенный временной промежуток. Для мощности существует единица измерения - микрорентген в час.

Полученная доза измеряется суммарной дозой, определяемой мощностью излучения, умноженной на время действия микрочастиц, таким образом, высчитывается смертельная доза радиация для человека, которая приводит к летальному исходу. Для измерения эквивалентной дозы используется зиверт (Зв), мощность для расчета определяется в зивертах в час (Зв/ч).

Для расчета эквивалентной дозы от воздействия лучей различных типов принимают во внимание интенсивность искомого излучения по отношению к зиверту. Например, при определении суммарной дозы от действия гамма-лучей приравнивают 100 рентген к 1 Зв. Мелкие дозы, меньше 1 Зв высчитывают в отношении:

  • 1 мЗв (миллизиверт) равен 1/1000 зиверта;
  • 1 мкЗв (микрозиверт) равен 1/1000 миллизиверта или 1/1000000 зиверта.

Прибор для измерения излучения

Стандартным распространенным устройством для определения мощности дозы или мощности, направленной на прибор и на оператора прибора, является дозиметр. Дозиметрия проводится за время подверженности радиации, например, рабочая смена или время выполнения спасательных работ.

Смертельная доза радиации для человека в рентгенах зависит от интенсивности излучения в месте нахождения работника, если суммарный показатель насчитывает более 600 единиц, то такое облучение опасно для жизни. Обследуются перевозимые грузы, предметы, измеряется фон от построек и зданий. Каждый человек, посещающий места с опасностью радиационного загрязнения, приобретает дозиметр в постоянное личное пользование.

Собираясь в незнакомую местность, например, горы, озера, отправляясь в поход или за ягодами и грибами, берут прибор для обследования местности перед длительным нахождением. Определяется интенсивность излучения участка перед строительством или при покупке земли. не понижается и не удаляется со стен зданий и предметов, поэтому предварительно выявляется опасность с помощью дозиметра.

Понятие радиоактивности

Некоторые атомы содержат неустойчивые ядра, способные превращаться или распадаться. Этот процесс способствует освобождению свободных ионов. Возникает энергетически мощное, способное воздействовать на окружающее вещество и провоцировать появление новых ионов отрицательного и положительного заряда. Смертельная доза радиации в рад возникает при облучении человека 600 рад, при этом 100 рад (внесистемная единица) = 100 рентгенам.

Причины радиоактивного заражения

Действие различных факторов и обстоятельств вызывает повышенный радиационный фон:

  • выпадение вещества радиоактивного характера из ядерного облака при взрыве;
  • при возникновении наведенной радиации, полученной образованием изотопов радиоактивного вида при мгновенном действии гамма-лучей и нейтронов, высвободившихся при ядерном взрыве;
  • действием внешнего излучения гамма и бета-лучей;
  • смертельная проявляется при внутреннем облучении после попадания радиоактивных изотопов внутрь человеческого организма из воздуха или с продуктами питания;
  • провоцируется в мирное время техногенными катастрофами на атомных объектах, неправильной транспортировкой и утилизацией ядерных отходов.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Разновидности доз

Эквивалентная фиксированная эффективная доза представляет собой определение доз радиации на организм в результате поступления некоторого количества вредного вещества. Этот показатель учитывает чувствительность внутренних органов и время нахождения радиоактивного вещества в теле (иногда в течение всей жизни). В некоторых случаях смертельная доза радиации в рентгенах измеряется для одного выбранного органа.

Амбидентный эквивалент дозы определяется величиной, которую мог бы получить человек, если бы присутствовал на территории, где делается дозиметрия, показатель измеряется в зивертах.

Воздействие радиационного загрязнения на организм человека

Любое излучение, приводящее к образованию в окружающей среде электрических частиц с различными знаками, считается ионизирующим. Рассеянный радиационный фон постоянно сопровождает человека, его создает космическое излучение, влияние солнца, природные источники радионуклидов, другие составляющие биосферы.

Для работы в опасных условиях персонал защищают специальными костюмами, соблюдают нормы безопасности. Облучение организм получает на рабочем месте при физических и химических опытах, проведении дефектоскопии, медицинских исследованиях, геологических изысканиях и др.

Мутация от облучения

Смертельная доза радиации для человека в рад составляет свыше 600 единиц и приводит к летальному исходу. Облучение в дозе от 400 до 600 рад способствует появлению лучевой болезни и может вызвать мутацию генов. Действие ионизированного преображения организма мало изучено, мутации проявляют себя через поколения. Разброс времени дает право сомневаться, появилась мутация от радиоактивного влияния или вызвана другими причинами.

Мутации по виду делят на доминантные, появляющиеся в короткий период после действия облучения и рецессивными. Второй вид проявляет себя, если мать и ребенок имеют один мутантный ген. Мутация не просыпается несколько поколений или не беспокоит человека совсем. Перерождение плода трудно определяется в случае преждевременных родов, если мутация не дает возможности зародышу достичь родового возраста.

Лучевая болезнь. Лейкоз

В постановке болезни большое влияние оказывает радиация. Смертельная доза облучения приводит к летальному исходу, но не менее опасны уровни облучения от 200 до 600 р, вызывающие лучевую болезнь. Радиация поражает человека после однократного мощного воздействия или при постоянном проникновении радиационного излучения небольшой мощности. Примером служит работа рентгенологов, не выдерживающих постоянного облучения и заболевающих характерными заболеваниями.

Наиболее опасным является действие радиации на неокрепший организм до 15 лет. О размере дозы единого мнения нет, исследователи приводят разные дозы допуска в 50, 100 и 200 р. Патогенез изучается в исследовательских институтах, лучевой лейкоз становится более доступным для лечения.

Онкологические заболевания

Изучение действия радиации на человека затруднено тем, что для появления обобщенных данных исследуются большие группы людей, что невозможно без специального эксперимента. Какая смертельная доза радиации является летальной, а какие уровни вызывают онкологические опухоли человека нельзя судить по эксперименту над животными.

В смысле выделения опасной дозы, вызывающей раковые опухоли, нет определенных данных. Любая доза полученной радиации дает толчок организму для начала деления агрессивных клеток. По частоте проявления болезни подразделяют следующим образом:

  • наиболее частым является проявление лейкоза;
  • из 1000 женщин, попавших в группу риска, раком молочной железы заболевают 10 пациенток;
  • такая же статистика заболевания раком щитовидки.

Степени тяжести лучевой болезни

Являются постоянная головная боль, нарушение движения, координации жестов, тошнота, рвота, головокружение, расстройства желудка и кишечника. Какая доза радиации смертельна для человека:

  • первая степень проявляется после латентного периода в две недели, заболевание вызывается облучением от 100 до 200 рентген;
  • для проявления второй степени после облучения дозой от 200 до 400 рентген, смерть наступает у четвертой части подвергшихся облучению;
  • третья стадия лучевой болезни - это смертность в 50% случаев, для возникновения достаточно дозы облучения от 400 до 600 рентгенов;
  • четвертую, самую опасную стадию, также вызывает радиация. Смертельная доза составляет более 600 рентген, летальный исход наступает в 100% случаев.

Способы индивидуальной защиты в случае радиационного загрязнения местности

Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.

К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.

Производится регулярная и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют в крайнем случае, полиэтиленовую пленку.

В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.

Мощность дозы естественного радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона:

15–19 мР/ч (миллирентген в час) – безопасно;

20–60 мР/ч – относительно безопасно;

61–120 мР/ч – зона повышенного внимания;

121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций.

При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения.

Аварии на радиационно-опасных объектах и их классификация

Радиационная авария – это происшествие, вызванное неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами приводящее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) РОО в количествах, превышающих установленные нормы безопасности.

Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, а также нарушении режимов хранения отработанных ядерных отходов, приводящие к облучению людей сверх допустимых пределов. В тяжелых случаях вследствие быстрого неуправляемого развития цепной реакции ядерная авария может приводить к ядерному взрыву малой мощности или тепловому взрыву, в результате которого происходит полное разрушению реактора или хранилища, сопровождающееся массовым облучением людей на значительной территории.

Классификация возможных аварий на РОО производится по двум признакам: по типовым нарушениям нормальной эксплуатации и по характеру последствий для персонала, населения и окружающей среды.

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на:

- проектные , то есть такие, которые могут быть предотвращены существующими (заложенными в проекте) системами безопасности,

- проектные с максимально возможными последствиями (так

называемые максимальные проектные аварии) и

- запроектные , которые не могут быть локализованы системами внутренней безопасности объекта.

Последствия первых двух не приводят к выходу радиоактивных веществ за пределы санитарно-защитной зоны и облучению населения сверх допустимых установленных норм, В случае же аварий третьего типа требуется принятие в той или иной степени мер по радиационной защите населения.

По масштабам последствий радиационные аварии делятся на:

Локальные – нарушения в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местные – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общие – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

В зависимости от медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические .

К малым радиационным авариям относятся инциденты не связанные с серьезными медицинскими последствиями. К второй и третьей группам относятся аварии, приводящие к поражению персонала, причем для аварий второй группы характерно только внешнее, а для третьей группы – внешнее и внутреннее облучение персонала. В авариях относящихся к четвертой и пятой группы (крупные и катастрофические) поражается и население, причем в катастрофических авариях имеет место внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Перейдем теперь к рассмотрению особенностей радиационных

аварий на конкретных радиационно-опасных объектах.

Начнем с аварий на атомных электростанциях , которые, как практически показала катастрофа на Чернобыльской атомной станции, могут привести к возникновению чрезвычайных ситуаций трансграничного (глобального) масштаба. Дополнительный материал по медицинским аспектам аварии на АЭС приведен в Приложении 2 в конце пособия.

В настоящее вpемя почти в 30 стpанах миpа эксплуатиpуется около 450 атомных энеpгоблоков общей мощностью более 350 ГВт, из них 46 – в странах СНГ. Общее количество выpабатываемой атомными станциями электpоэнеpгии в миpе составляет около 20%, в Евpопе - почти 35%.

Развитие атомной энергетики сопровождается непрерывным ростом числа возникающих на атомных станциях аварийных ситуаций. Всего с момента первой серьезной аварии на АЭС NRX в Канаде в 1952 году во всем миpе было заpегистpиpовано более 300 аваpийных ситуаций на атомных станциях.

Для классификации аварий на АЭС могут быть использованы как сформулированные выше общие классификационные градации аварий на радиационно-опасных объектах, так и специальная Международная шкала событий на АЭС (шкала INES), разработанная под эгидой МАГАТЭ в 1989 г. и введенная в действие в России с сентября 1990 г. В соответствии с этой шкалой события на АЭС условно делятся на 7 групп (уровней).

К событиям 1-3 уровней относятся происшествия (незначительные, средней тяжести и серьезные).

1 и 2 уровни – это функциональные отключения и отказы в управлении, не вызывающие непосредственного влияния на безопасность АЭС, а тем более на окружающую среду.

3 уровень – серьезное происшествие из-за отказа оборудования или ошибок эксплуатации. В окружающую среду могут быть выброшены радиоактивные вещества. При этом доза облучения вне АЭС не превышает нескольких мЗв (не более 5 годовых ПДД доз). Внутри АЭС обслуживающий персонал может быть переоблучен дозами порядка 50 мЗв. За пределами площадки не требуется принятия защитных мер.

События 4-го уровня и выше относятся к авариям, причем 4-й уровень соответствует максимальной проектной аварии. Серьезное повреждение активной зоны и физических барьеров. Облучение персонала порядка 1 Зв, приводящее к острой лучевой болезни. Выброс р/а продуктов в окружающую среду в количествах, не превышающих дозовые пределы для населения при проектных авариях.

5 уровень – авария с риском для окружающей среды. Тяжелое повреждение активной зоны и физических барьеров. Имеет место значительный выброс продуктов деления в окружающую среду, радиологически эквивалентный активностям от нескольких единиц до десятков терабеккерелей радиоактивного йода131. Возможна частичная эвакуация, необходима местная йодная профилактика.

6 уровень – тяжелая авария. По внешним последствиям характеризуется значительным выбросом РВ эквивалентным активностям от десятков до сотен терабеккерелей радиоактивного йода-131.

7 уровень - глобальная авария, сопровождающаяся выбросом РВ в окружающую среду, радиологически эквивалентным активностям от тысяч до десятков тысяч терабеккерелей радиоактивного йода-131. Наносится ущерб здоровью людей и окружающей среде на больших территориях.

В развитии аварий на АЭС можно выделить следующие фазы :

Начальная фаза – характеризуется наличием угрозы выброса радиоактивных веществ в окружающую среду. Меры защиты: оповещение об угрозе; обеспечение препаратами стабильного йода; приведение в готовность защитных сооружений; подготовка к организованной эвакуации.

Ранняя фаза – фаза острого облучения. Происходит выброс радиоактивных веществ в окружающую среду. Меры защиты: оповещение; эвакуация; ограничение питания.

Промежуточная фаза – дополнительных поступлений радиоактивных веществ в окружающую среду нет. Радиационная обстановка сформировалась полностью. Экстренные меры радиационной защиты: эвакуация; отселение; ограничение на сельскохозяйственную деятельность; ограничение рыбного производства; завоз воды и продуктов.

Последняя фаза – возвращение к нормальной деятельности.

Основным поражающим фактором крупных аварий на АЭС является радиоактивное заражение местности в результате выброса радионуклидов из активной зоны реактора в атмосферу. Кроме того, при запроектной аварии с разрушением реактора на работающую смену персонала поражающее воздействие может оказать световое излучение и проникающая радиация (нейтронное и гамма-излучение) из активной зоны. Еще одним поражающим фактором может являться ударная волна (воздушная или сейсмическая), возникающая при ядерном взрыве реактора (при тепловом взрыве ее воздействие незначительно).

Меры защиты от радиационных аварий

В случае аварии на радиационно-опасном объекте необходимые меры защиты определяются по результатам зонирования загрязненных территорий. При этом под зоной радиационной аварии понимают территорию, на которой годовая доза облучения превышает 5 мЗв.

Зонирование и комплекс защитных мероприятий в соответствующих зонах зависит от фазы радиационной аварии.

На ранней и промежуточной (средней) фазах аварии территория вокруг РОО делится на следующие зоны:

Зона отселения - доза более 50 мЗв. В этой зоне вмешательство осуществляется путем эвакуации населения.

Зона добровольного отселения – доза от 20 до 50 мЗв. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты. Оказывается помощь в добровольном переселении за пределы зоны.

Зона ограниченного проживания населения – доза от 5 до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Жителям и лицам, проживающим на указанной территории, разъясняется риск ущерба здоровью, обусловленный воздействием радиации.

Зона радиационного контроля - доза от 1 мЗв до 5 мЗв. (находится вне зоны радиационной аварии). Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения критических групп населения. Те же меры по снижению доз, что и в предыдущей зоне.

Зонирование территории вокруг РОО на последней

(восстановительной) стадии радиационной аварии

Зона отчуждения - доза более 50 мЗв. В этой зоне постоянное проживание не допускается, а хозяйственная деятельность и природопользование регулируются специальными актами. Осуществляются меры мониторинга и защиты работающих с обязательным индивидуальным дозиметрическим контролем.

Зона отселения – доза от 20 мЗв до 50 мЗв. Въезд на указанную территорию для постоянного проживания не разрешен. В этой зоне запрещается постоянное проживание лиц репродуктивного возраста и детей. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты.

Зона ограниченного проживания населения – доза от 5 мЗв до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Добровольный въезд на указанную территорию для постоянного проживания не ограничивается. Лицам, въезжающим на указанную территорию, разъясняется риск ущерба здоровью.

Зона радиационного контроля – доза от 1 мЗв до 5 мЗв. Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения групп населения. Те же меры по снижению доз, что и в зоне ограниченного проживания.

Действия населения при авариях на радиационно-опасных

Объектах

Основным способом оповещения населения об авариях на радиационно-опасных объектах является передача информации по местной теле- и радиовещательной сети с использованием установленного сигнала "Внимание всем!", при котором для привлечения внимания населения включаются электросирены, дублируемые производственными гудками и другими установленными на местах сигнальными средствами.

Если в поступившей информации отсутствуют рекомендации по действиям, следует защитить себя от внешнего и внутреннего облучения. Для этого по возможности быстро защитить органы дыхания табельными средствами защиты (респиратор, противогаз), а при их отсутствии ватно-марлевыми повязками, шарфом, платком и укрыться в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместив их в пластиковый пакет или пленку, немедленно закрыть окна, двери и вентиляционные отверстия, включить радиоприемники, телевизоры и радиорепродукторы, занять место вдали от окон, быть готовым к приему информации и указаний о действиях.

При наличии измерителя мощности дозы определить степень загрязнения квартиры.

Обязательно загерметизировать помещение и укрыть продукты питания. Для этого подручными средствами заделать щели в окнах и дверях, заклеить вентиляционные отверстия. Открытые продукты поместить в полиэтиленовые мешки, пакеты или пленку. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, закрываемые шкафы или кладовки.

При получении указаний по средствам массовой информации провести профилактику препаратами йода (например, йодистым калием). При их отсутствии использовать 5% раствор йода:3-5 капель на стакан воды для взрослых и 1-2 капли на 100 г жидкости для детей. Прием повторить через 6-7 часов. Следует помнить, что препараты йода противопоказаны для беременных женщин.

При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промыть.

Строго соблюдать правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма.

В случае загрязненности помещения защитить органы дыхания.

Помещения оставлять лишь в крайней необходимости и на короткое время. При выходе защитить органы дыхания, надеть плащ (накидку из подручных материалов) или табельные средства защиты кожи.

После возвращения переодеться.


Похожая информация.


Кого-то одно слово радиация повергает в ужас! Сразу заметим, что она есть везде, существует даже понятие естественный радиационный фон и это часть нашей жизни! Радиация возникла за долго до нашего появления и к некоторому уровню её, человек адаптировался.

Чем измеряется радиация?

Активность радионуклида измеряют в Кюри (Ки, Си) и Беккерелях (Бк, Bq). Количество радиоактивного вещества обычно определяют не единицами массы (грамм, килограмм и т.д.), а активностью данного вещества.

1 Бк = 1 распад в секунду
1Ки = 3,7 х 10 10 Бк

Поглощённая доза (количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического объекта, например, тканями организма). Грей (Гр/Gy) и Рад (рад/rad).

1 Гр = 1 Дж/кг
1 рад = 0.01Гр

Мощность дозы (полученная доза за единицу времени). Грей в час (Гр/ч); Зиверт в час (Зв/ч); Рентген в час (Р/ч).

1 Гр/ч = 1 Зв/ч = 100 Р/ч (бета и гамма)
1 мк Зв/ч = 1 мкГр/ч = 100 мкР/ч
1 мкР/ч = 1/1000000 Р/ч

Эквивалентная доза (единица поглощенной дозы, умноженная на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.) Зиверт (Зв, Sv) и Бэр (бер, rem) — «биологический эквивалент рентгена».

1 Зв = 1Гр = 1Дж/кг (бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10мЗв

Перевод величин:

1 Зивет (Зв, Sv) = 1000 миллизивертов (mSv, мЗв) = 1000000 микрозивертов (uSv, мкЗв) = 100 бер = 100000 миллибэр.

Безопасный радиационный фон?

Наиболее безопасным радиационным излучением для человека считается уровень, не превышающий 0,2 микрозиверта в час (или 20 микрорентген в час), это тот случай, когда «радиационный фон в норме» . Менее безопасен уровень, не превышающий 0,5 мкЗв/час .

Не малую роль для здоровья человека играет не только сила, но и время воздействия. Так более низкое по силе излучение оказывающие свое влияние более продолжительное время, может быть опаснее сильного, но кратковременного облучения.

Накопление радиации.

Также существует такое понятие какнакопленная доза радиации. На протяжении жизнь человек может накопить 100 — 700 мЗв , это считается нормой. (в районах с повышенным радиоактивным фоном: например, в горных районах, уровень накопленной радиации будет держатся в верхних пределах). Если в год человек накапливает около3-4 мЗв/год эта доза считается средней и безопасна для человека.

Следует также отметить что по мимо естественного фона на жизнь человека могут влиять и другие явления. Так, например, «вынужденные облучения»: рентген лёгких, флюорография — даёт до 3 мЗв. Снимок у зубного врача — 0.2мЗв. Сканеры в аэропортах 0.001 мЗв за одну проверку. Полёт на самолёте — 0.005-0.020 миллизивертов в час, получаемая доза зависит от времени полёта, высоты, и месте пассажира, так у иллюминатора доза облучения самая большая. Также дозу радиации можно получить и дома от безопасных казалось бы . Свою немалую лепту в облучение людей вносит и , скапливающийся в мало проветриваемых помещениях.

Виды радиоактивного излучения и их краткое описание:

Альфа — имеет небольшую проникающ ую способность (можно защититься буквально листиком бумаги), однако последствия для облучённых, живых тканей, самые страшные и разрушительные. Обладает низкой по сравнению с другими ионизирующими излучениями скоростью, равной 20 000 км/с, а также наименьшее расстояния воздействия. Большую опасность представляет прямой контакт и попадание внутрь человеческого тела.

Нейтронное — состоит из потоков нейтронов. Основные и сточники; атомные взрывы, ядерные реакторы . Наносит серьезный ущерб . От высокой проникающей способности , нейтронного излучения , возможно защитится материалами с высоким содержанием водорода (имеющие в своей химической формуле атомы водорода). Обычно применяют воду, парафин, полиэтилен. Скорость = 40 000 км /с .

Бета — появляется в процессераспада ядер атомов радиоактивных элементов. Без проблем проходит через одежду и частично живые ткани. Проходя более плотные вещества (такие, как металл) вступает в активное взаимодействие с ними, как следствие, основная часть энергии теряется, передаваясь элементам вещества. Так металлический лист всего в несколько миллиметров может полностью остановить бета-излучение. Может достигать 300 000 км/с .

Гамма — испускается при переходах между возбуждёнными состояниями атомных ядер. Пронзает одежду, живые ткани, чуть труднее проходит сквозь плотные вещества. Защитой будет значительная толщина стали или бетона. При этом действие гаммы, намного слабее (примерно в 100 раз) чем бета и десятки тысяч раз альфа излучения. Преодолевает значительные расстояния со скоростью 300 000 км/с.

Рентгеновское — схоже сгаммой, но у неё меньшая способность проникновения, из-за более длинной волны.

© ВЫЖИВАЙ.РУ

Post Views: 10 547



 

Возможно, будет полезно почитать: