Дискретная случайная величина: примеры решений задач. Дискретная случайная величина и функция её распределения

Одним из важнейших понятий теории вероятностей является понятие случайной величины .

Случайной называют величину , принимающую в результате испытаний те или иные возможные значения, наперед неизвестные и зависящие от случайных причин, которые заранее не могут быть учтены.

Случайные величины обозначаются заглавными буквами латинского алфавита X , Y , Z и т. д. или заглавными буквами латинского алфавита с правым нижним индексом , а значения, которые могут принимать случайные величины - соответствующими малыми буквами латинского алфавита x , y , z и т. д.

Понятие случайной величины тесно связано с понятием случайного события. Связь со случайным событием заключается в том, что принятие случайной величиной некоторого числового значения есть случайное событие, характеризуемое вероятностью .

На практике встречаются два основных типа случайных величин:

1. Дискретные случайные величины;

2. Непрерывные случайные величины.

Случайной величиной называется числовая функция от случайных событий.

Например, случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента.

Дискретными случайными величинами называются случайные величины, принимающие только отдаленные друг от друга значения, которые можно заранее перечислить.

Закон распределения (функция распределения и ряд распределения или плотность вероятности) полностью описывают поведение случайной величины. Но в ряде задач достаточно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный вопрос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Законом распределения дискретной случайной величины называется всякое соотношение , устанавливающее связь между возможными значениями случайной величиныи соответствующими им вероятностями .

Закон распределения случайной величины может быть представлен в виде таблицы :

Сумма вероятностей всех возможных значений случайной величины равна единице, т. е. .

Закон распределения можно изобразить графически : по оси абсцисс откладывают возможные значения случайной величины, а по оси ординат - вероятности этих значений; полученные точки соединяют отрезками. Построенная ломаная называется многоугольником распределения .

Пример . Охотник, имеющий 4 патрона, стреляет по дичи до первого попадания или расходования всех патронов. Вероятность попадания при первом выстреле равна 0,7, при каждом следующем выстреле уменьшается на 0,1. Составить закон распределения числа патронов, израсходованных охотником.


Решение. Так как охотник, имея 4 патрона, может сделать четыре выстрела, то случайная величина X - число патронов, израсходованных охотником, может принимать значения 1, 2, 3, 4. Для нахождения соответствующих им вероятностей введем события:

- “попадание при i - ом выстреле”, ;

- “промах при i - ом выстреле”, причем события и - попарно независимы.

Согласно условию задачи имеем:

,

По теореме умножения для независимых событий и теореме сложения для несовместных событий, находим:

(охотник попал в цель с первого выстрела);

(охотник попал в цель со второго выстрела);

(охотник попал в цель с третьего выстрела);

(охотник попал в цель с четвертого выстрела либо промахнулся все четыре раза).

Проверка: - верно.

Таким образом, закон распределения случайной величины X имеет вид:

0,7 0,18 0,06 0,06

Пример. Рабочий обслуживает три станка. Вероятность того, что в течение часа первый станок не потребует регулировки - 0,9, второй - 0,8, третий - 0,7. Составить закон распределения числа станков, которые в течение часа потребуют регулировки.

Решение. Случайная величина X - число станков, которые в течение часа потребуют регулировки, может принимать значения 0,1, 2, 3. Для нахождения соответствующих им вероятностей введем события:

- “i - ый станок в течение часа потребует регулировки”, ;

- “i - ый станок в течение часа не потребует регулировки”, .

По условию задачи имеем:

, .

На этой странице мы собрали краткую теорию и примеры решения учебных задач, в которых дискретная случайная величина уже задана своим рядом распределения (табличный вид) и требуется ее исследовать: найти числовые характеристики, построить графики и т.д. Примеры на известные виды распределения вы можете найти по ссылкам:


Краткая теория о ДСВ

Дискретная случайная величина задается своим рядом распределения: перечнем значений $x_i$, которые она может принимать, и соответствующих вероятностей $p_i=P(X=x_i)$. Количество значений случайной величины может быть конечным или счетным. Для определенности будем рассматривать случай $i=\overline{1,n}$. Тогда табличное представление дискретной случайной величины имеет вид:

$$ \begin{array}{|c|c|} \hline X_i & x_1 & x_2 & \dots & x_n \\ \hline p_i & p_1 & p_2 & \dots & p_n \\ \hline \end{array} $$

При этом выполняется условие нормировки: сумма всех вероятностей должна быть равна единице

$$\sum_{i=1}^{n} p_i=1$$

Графически ряд распределения можно представить полигоном распределения (или многоугольником распределения ). Для этого на плоскости откладываются точки с координатами $(x_i,p_i)$ и соединяются по порядку ломаной линией. Подробные примеры вы найдете .

Числовые характеристики ДСВ

Математическое ожидание:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i$$

Дисперсия:

$$ D(X)=M(X^2)-(M(X))^2 = \sum_{i=1}^{n} x_i^2 \cdot p_i - (M(X))^2$$

Среднее квадратическое отклонение:

$$\sigma (X) = \sqrt{D(X)}$$

Коэффициент вариации:

$$V(X) = \frac{\sigma(X)}{M(X)}$$.

Мода: значение $Mo=x_k$ с наибольшей вероятностью $p_k=\max_i{p_i}$.

Вы можете использовать онлайн-калькуляторы для вычисления математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Функция распределения ДСВ

По ряду распределения можно составить функцию распределения дискретной случайной величины $F(x)=P(X\lt x)$. Эта функция задает вероятность того, что случайная величина $X$ примет значение меньшее некоторого числа $x$. Примеры построения с подробными вычислениями и графиками вы найдете в примерах ниже.

Примеры решенных задач

Задача 1. Дискретная случайная величина задана рядом распределения:
1 2 3 4 5 6 7
0,05 0,15 0,3 0,2 0,1 0,04 0,16
Построить многоугольник распределения и функцию распределения $F(x)$. Вычислить: $M[X], D[X], \sigma[X]$, а также коэффициент вариации, асимметрии, эксцесса, моду и медиану.

Задача 2. Дан закон распределения дискретной случайной величины Х. Требуется:
а) определить математическое ожидание М(х), дисперсию D(х) и среднее квадратическое отклонение (х) случайной величины Х; б) построить график этого распределения.
хi 0 1 2 3 4 5 6
pi 0,02 0,38 0,30 0,16 0,08 0,04 0,02

Задача 3. Для случайной величины Х с данным рядом распределения
-1 0 1 8
0,2 0,1 $р_1$ $р_2$
А) найдите $р_1$ и $р_2$ так, чтобы $М(Х)=0,5$
Б) после этого вычислите математическое ожидание и дисперсию случайной величины $Х$ и постройте график ее функции распределения

Задача 4. Дискретная СВ $X$ может принимать только два значения: $x_1$ и $x_2$, причем $x_1 \lt x_2$. Известны вероятность $P$ возможного значения, математическое ожидание $M(x)$ и дисперсия $D(x)$. Найти: 1) Закон распределения этой случайной величины; 2) Функцию распределения СВ $X$; 3) Построить график $F(x)$.
$P=0,3; M(x)=6,6; D(x)=13,44.$

Задача 5. Случайная величина Х принимает три значения: 2, 4 и 6. Найти вероятности этих значений, если $M(X)=4,2$, $D(X)=1,96$.

Задача 6. Дан ряд распределения дискретной с.в. $Х$. Найти числовые характеристики положения и рассеивания с.в. $Х$. Найти м.о. и дисперсию с.в. $Y=X/2-2$, не записывая ряда распределения с.в. $Y$, проверить результат с помощью производящей функции.
Построить функцию распределения с.в. $Х$.
¦ x¦ 8 ¦ 12 ¦ 18 ¦ 24 ¦ 30 ¦
¦ p¦ 0,3¦ 0,1¦ 0,3¦ 0,2¦ 0,1¦

Задача 7. Распределение дискретной случайной величины $Х$ задано следующей таблицей (рядом распределения):
-6 3 9 15
0,40 0,30 ? 0,10
Определить недостающее значение в таблице распределения. Вычислить основные числовые характеристики распределения: $M_x, D_x, \sigma_x$. Найти и построить функцию распределения $F(x)$. Определить вероятность того, что случайная величина $Х$ примет значения:
А) больше чем 6,
Б) меньше чем 12,
В) не больше 9.

Задача 8. В задаче требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).

Задача 9. Задан закон распределения дискретной случайной величины $X$ (в первой строке указаны возможные значения $x_i$, во второй строке – вероятности возможных значений $p_i$).
Найти:
А) математическое ожидание $M(X)$, дисперсию $D(X)$ и среднее квадратическое отклонение $\sigma(X)$;
Б) составить функцию распределения случайной величины $F(x)$ и построить ее график;
В) вычислить вероятности попадания случайной величины $X$ в интервал $x_2 \lt X \lt x_4$, пользуясь составленной функцией распределения $F(x)$;
Г) составить закон распределения величины $Y=100-2X$;
Д) вычислить математическое ожидание и дисперсию составленной случайной величины $Y$ двумя способами, т.е. пользуясь
свойством математического ожидания и дисперсии, а также непосредственно по закону распределения случайной величины $Y$.
10 20 30 40 50
0,1 0,2 0,1 0,2 0,4

Задача 10. Дискретная случайная величина задана таблице. Вычислить ее начальные и центральные моменты до 4 порядка включительно. Найти вероятности событий $\xi \lt M\xi$, $\xi \ge M \xi$, $\xi \lt 1/2 M \xi$, $\xi \ge 1/2 M \xi$.
X 0 0,3 0,6 0,9 1,2
P 0,2 0,4 0,2 0,1 0,1

Дан ряд распределения дискретной случайной величины. Найти недостающую вероятность и построить график функции распределения. Вычислить математическое ожидание и дисперсию этой величины.

Случайная величина Х принимает только четыре значения: -4, -3, 1 и 2. Каждое из этих значений она принимает с определенной вероятностью. Так как сумма всех вероятностей должна быть равна 1, то недостающая вероятность равна:

0,3 + ? + 0,1 + 0,4 = 1,

Составим функцию распределения случайной величины Х. Известно, что функция распределения , тогда:


Следовательно,

Построим график функции F (x ) .

Математическое ожидание дискретной случайной величины равно сумме произведений значения случайной величины на соответствующую вероятность, т.е.

Дисперсию дискретной случайной величины найдем по формуле:

ПРИЛОЖЕНИЕ

Элементы комбинаторики


Здесь: - факториал числа

Действия над событиями

Событие – это всякий факт, который может произойти или не произойти в результате опыта.

    Объединение событий А и В – это событие С , которое состоит в появлении или события А , или события В , или обоих событий одновременно.

Обозначение:
;

    Пересечение событий А и В – это событие С , которое состоит в одновременном появлении обоих событий.

Обозначение:
;

Классическое определение вероятности

Вероятность события А – это отношение числа опытов
, благоприятствующих появлению события А , к общему числу опытов
:

Формула умножения вероятностей

Вероятность события
можно найти по формуле:

- вероятность события А,

- вероятность события В,

- вероятность события В при условии, что событие А уже произошло.

Если события А и В – независимы (появление одного не влияет на появление другого), то вероятность события равна:

Формула сложения вероятностей

Вероятность события
можно найти по формуле:

Вероятность события А,

Вероятность события В,

- вероятность совместного появления событий А и В .

Если события А и В – несовместны (не могут появиться одновременно), то вероятность события равна:

Формула полной вероятности

Пусть событие А может произойти одновременно с одним из событий
,
, …,
- назовем их гипотезами. Также известны
- вероятность выполнения i -ой гипотезы и
- вероятность появления события А при выполнении i -ой гипотезы. Тогда вероятность события А может быть найдена по формуле:

Схема Бернулли

Пусть проводится n независимых испытаний. Вероятность появления (успеха) события А в каждом из них постоянна и равна p , вероятность неудачи (т.е. не появления события А ) q = 1 - p . Тогда вероятность появления k успехов в n испытаниях можно найти по формуле Бернулли:

Наивероятнейшее число успехов в схеме Бернулли – это число появлений некоторого события, которому соответствует наибольшая вероятность. Можно найти по формуле:

Случайные величины

дискретные непрерывные

(н-р, число девочек в семье с 5 детьми) (н-р, время исправной работы чайника)

Числовые характеристики дискретных случайных величин

Пусть дискретная величина задана рядом распределения:

Х

Р

, , …, - значения случайной величины Х ;

, , …, - соответствующие им значения вероятностей.

Функция распределения

Функцией распределения случайной величины Х называется функция , заданная на всей числовой прямой и равная вероятности того, что Х будет меньше х :

Вопросы к экзамену

    Событие. Операции над случайными событиями.

    Понятие вероятности события.

    Правила сложения и умножения вероятностей. Условные вероятности.

    Формула полной вероятности. Формула Байеса.

    Схема Бернулли.

    Случайная величина, ее функция распределения и ряд распределения.

    Основные свойства функции распределения.

    Математическое ожидание. Свойства математического ожидания.

    Дисперсия. Свойства дисперсии.

    Плотность распределения вероятностей одномерной случайной величины.

    Виды распределений: равномерное, экспоненциальное, нормальное, биномиальное и распределение Пуассона.

    Локальная и интегральные теоремы Муавра-Лапласа.

    Закон и функция распределения системы двух случайных величин.

    Плотность распределения системы двух случайных величин.

    Условные законы распределения, условное математическое ожидание.

    Зависимые и независимые случайные величины. Коэффициент корреляции.

    Выборка. Обработка выборки. Полигон и гистограмма частот. Эмпирическая функция распределения.

    Понятие оценки параметров распределения. Требования к оценке. Доверительный интервал. Построение интервалов для оценки математического ожидания и среднего квадратического отклонения.

    Статистические гипотезы. Критерии согласия.

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:



 

Возможно, будет полезно почитать: