Для чего нужен коэффициент вариации. Коэффициент вариации в статистике: примеры расчета

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

ПРАКТИЧЕСКАЯ РАБОТА 3

Цель работы : получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы :

1. Определить вид и форму (простая или взвешенная) показателей вариации.

3. Сформулировать выводы.

1. Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение, относительный показатель квартильной вариации и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

где – наибольшее значение варьирующего признака;

– наименьшее значение варьирующего признака.

Квартильное отклонение (Q) – применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

где и – соответственно первая и третья квартили распределения.

Квартили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине ; 25% единиц будут заключены между и ; 25% единиц будут заключены между и , и остальные 25% превосходят .

Квартили 1 и 3 определяются по формулам:

,

Где – нижняя граница интервала, в котором находится первая квартиль;

– сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

– частота интервала, в котором находится первая квартиль.

где Ме – медиана ряда;

,

условные обозначения те же, что и для величин .

В симметричных или умеренно асимметричных распределениях Q»2/3s. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение () представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.



Невзвешенное среднее линейное отклонение,

- взвешенное среднее линейное отклонение.

Дисперсия () – средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

- невзвешенная,

- взвешенная.

Среднее квадратическое отклонение (s) – наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения – величины именованные, имеют размерность осредняемого признака. Дисперсия единицы измерения не имеет.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции (относительный размах вариации) рассчитывается по формуле:

,

Линейный коэффициент вариации (относительное линейное отклонение):

Относительный показатель квартильной вариации :

или

Коэффициент вариации :

,

Наиболее часто применяемый в статистике показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Чем больше величина коэффициента вариации, тем больше разброс значений признака вокруг средней, тем больше неоднородность совокупности. Существует шкала определения степени однородности совокупности в зависимости от значений коэффициента вариации (17; С.61).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними , тем больше асимметрия ряда.

Для характеристики асимметричности в центральной части распределения, то есть основной массы единиц или для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель асимметрии К.Пирсона:

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (рис. 1). Между показателями центра распределения в этом случае имеется соотношение: .



Рис. 1. Распределение:

1 – с левосторонней асимметрией; 2 – с правосторонней асимметрией.

Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:

где П – процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):

где - центральный момент третьего порядка:

σ – среднеквадратическое отклонение.

Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:

.

Если отношение , асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение , асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:

,

где П – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической.

Наиболее точным является показатель, использующий центральный момент четвертого порядка:

где - центральный момент четвертого момента;

- для несгруппированных данных;

- для сгруппированных данных.

На рисунке 2 представлены два распределения: одно – островершинное (величина эксцесса положительная), второе – плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение .



Рис. 2. Распределение:

1,4 – нормальное; 2 – островершинное; 3 – плосковершинное

Средняя квадратическая ошибка эксцесса рассчитывается по формуле:

,

где n – число наблюдений.

Если , то эксцесс существенен, если , то несущественен.

Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.

2. Рассмотрим методику исчисления показателей вариации.

ВВЕДЕНИЕ

Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием MS Excel, ППП Statistica.

Часть II методических указаний характеризует расчет показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного отклонения, дисперсии и среднего квадратического отклонения, коэффициентов осцилляции, вариации, асимметрии, эксцесса и других.

Расчет показателей вариации наряду с построением интервальных и дискретных вариационных рядов и расчетом средних величин, представленными в части I методических указаний, имеет большое значение для анализа рядов распределения.

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

Цель работы: получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы:

Определить вид и форму (простая или взвешенная) показателей вариации.

Сформулировать выводы.

Пример расчета показателей вариации

Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

где - наибольшее значение варьирующего признака;

Наименьшее значение варьирующего признака.

Квартильное отклонение (Q) - применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

Квартили - это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине; 25% единиц будут заключены между и; 25% единиц будут заключены между и, и остальные 25% превосходят.

где - нижняя граница интервала, в котором находится первая квартиль;

Сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

Частота интервала, в котором находится первая квартиль.

где Ме - медиана ряда;

условные обозначения те же, что и для величины.

В симметричных или умеренно асимметричных распределениях Q2/3. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение () представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.

(6) - невзвешенное среднее линейное отклонение,

(7) - взвешенное среднее линейное отклонение.

Дисперсия () - средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

(8) - невзвешенная,

(9) - взвешенная.

Среднее квадратическое отклонение () - наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения - величины именованные, имеют размерность осредняемого признака.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции рассчитывается по формуле:

Относительное линейное отклонение (линейный коэффициент вариации):

(13) или (14)

Коэффициент вариации:

Наиболее часто применяемый в статистике показатель относительной колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник М.: Финансы и статистика, 1991 г., стр. 105).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними, тем больше асимметрия ряда.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель As:

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (Рисунок 1). Между показателями центра распределения в этом случае имеется такое соотношение: .

Рисунок 1. Распределение: 1 - с правосторонней асимметрией; 2 - с левосторонней асимметрией.

Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:

где П - процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):

где - центральный момент третьего порядка:

(19) - для несгруппированных данных;

(20) - для сгруппированных данных.

у - среднеквадратическое отклонение.

Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:

Если отношение, асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение, асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:

где П - доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической.

Наиболее точным является показатель, использующий центральный момент четвертого порядка:

где - центральный момент четвертого момента;

(24) - для несгруппированных данных;

(25) - для сгруппированных данных.

На рисунке 2 представлены два распределения: одно - островершинное (величина эксцесса положительная), второе - плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение.

Рисунок 2. Распределение: 1,4 - нормальное; 2 - островершинное; 3 - плосковершинное

Средняя квадратическая ошибка эксцесса рассчитывается по формуле:

где n - число наблюдений.

Если, то эксцесс существенен, если, то несущественен.

Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.

Рассмотрим методику исчисления показателей вариации.

Таблица 1. Данные об объеме продаж валюты нескольких отделений Центробанка.

Определить средний объем продаж валюты по совокупности отделений, рассчитать абсолютные и относительные показатели вариации.

Рассчитаем размах вариации:

R = = 24,3 - 10,2 = 14,1 млн. руб.

вариация дисперсия осцилляция вариация асимметрия эксцесс

Для определения отклонений значений признака от средней и их квадратов строим вспомогательную таблицу:

Таблица 2. Расчетная таблица

Среднее значение находим по формуле средней арифметической простой:

Среднее линейное отклонение:

Дисперсия:

Коэффициент осцилляции:

Коэффициент вариации:

Для расчета показателей формы распределения строим вспомогательную таблицу:

Таблица 3. Расчетная таблица


Таблица 4. Данные о товарообороте предприятий одной из отраслей промышленности.

Определить средний объем товарооборота, структурные средние, абсолютные и относительные показатели вариации и насколько фактическое распределение согласуется с нормальным (по показателям формы распределения).

Для расчета показателей построим вспомогательную таблицу.

Таблица 5. Расчетная таблица

Размах вариации:

Среднее значение находим по формуле средней арифметической взвешенной:

В интервальных рядах распределения мода определяется по формуле:

В нашем случае мода будет равна:

В интервальном вариационном ряду медиана определяется по формуле:

В нашем случае медиана будет равна:

Квартильное отклонение:

где и - соответственно первая и третья квартили распределения.

Квартили определяются по формулам:

Среднее линейное отклонение:

Дисперсия:

Среднее квадратическое отклонение:

Рассчитаем относительные показатели вариации.

Коэффициент осцилляции:

Относительное линейное отклонение:

Относительный показатель квартильной вариации:

Коэффициент вариации:

Определим показатели формы распределения:

Формулировка выводов.

Сформулируем выводы по рассчитанным показателям вариации примера 2, в котором представлен интервальный ряд распределения предприятий по объему товарооборота, млн. руб.

Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 40 млн. руб. Средний объем товарооборота - 30 млн. руб. Чаще всего встречающееся значение объема товарооборота в рассматриваемой совокупности предприятий - 31,4 млн. руб., причем 50% (40 предприятий) имеют объем товарооборота менее 30,5 млн. руб., а 50% свыше.

Квартильное отклонение, равное 5, свидетельствует об умеренной асимметрии распределения, так как в симметричных или умеренно асимметричных распределениях (в рассматриваемом примере).

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности. Так, средняя величина колеблемости объема товарооборота предприятий отраслей промышленности составляет: по среднему линейному отклонению - 6,5 млн. руб. (абсолютное отклонение); по среднему квадратическому отклонению - 8,1 млн. руб. Квадрат отклонений индивидуальных значений признака от их средней величины равен 65.

Разница между крайними значениями признака на 33,3% превышает среднее значение (= 133,3%).

Относительное линейное отклонение (= 21,7%) и относительный показатель квартильной вариации (= 16,4%) характеризуют однородность исследуемой совокупности, что подтверждает рассчитанный коэффициент вариации, равный 27% (V =27% меньше 33%).

По рассчитанным показателям асимметрии и эксцесса можно сделать вывод, что распределение плосковершинно (Ex < 0) и наблюдается левосторонняя асимметрия (As < 0). Асимметрия и эксцесс являются несущественными.

Показатели вариации

Понятие вариации

Вариация - это наличие различий у отдельных единиц сово­купности по какому-либо признаку.

Эта категория занимает особое место в статистической науке, ибо именно наличие вариации единиц совокупности предопределяет необходимость статистики. Если бы отдельные единицы сово­купности имели они и те же значения признаков (например, рост, возраст у всех живущих людей был бы одинаковый), то для изу­чения данной совокупности по этим признакам достаточно было бы изучить только одну единицу совокупности. Однако зачастую значения признаков колеблются, изменяются при переходе от од­ной единицы к другой. Как правило, вариация является порожде­нием следующих причин:

Своеобразие условий, в которых происходит развитие от­дельных единиц совокупности;

Неравномерность развития отдельных единиц.

Например, причиной вариации роста у отдельно взятых людей является генетическая особен­ность каждого организма (основная причина), особенности питания, экологическая обстановка и т.д.; вариация урожайности может быть вызвана климатическими, почвенными особенностями зоны про­израстания, режима и возможности полива, качеством посадочного материала и т.д.

Вариация существует во времени и в пространстве.

Под вариаци­ей в пространстве понимается колеблемость значений признака по отдельным территориям (урожайность пшеницы в разных ре­гионах).

Под вариацией во времени подразумевается объективное измене­ние значений признака в разные периоды (или моменты). Напри­мер, со временем изменяется средняя продолжительность пред­стоящей жизни, доходность предприятий отрасли, уровень по­требностей людей и т.д.

Изучение вариации имеет важное значение, так как вариация ха­рактеризует степень однородности совокупности. Однородность совокупности - необходимое условие при расчете большинства статистических показателей, в частности средних величин.

Показатели вариации

Показатели вариации являются необходимым дополнением при расчете средних величин, так как определяют степень однород­ности совокупности.

Система показателей вариации включает следующее:

Размах вариации;

Среднее квадратическое отклонение;

Дисперсия;

Коэффициент вариации.

Значение показателей вариации:

Характеризуются размеры вариации признака;

Показатели вариации дополняют систему средних величин, в которой затушевываются индивидуальные различия;

Показатели вариации позволяют охарактеризовать уровень однородности совокупности;

С помощью показателей вариации, путем сравнения вариа­ции у отдельных признаков (разных), есть возможность измерить взаимосвязь между этими признаками.

Первый показатель, так называемый размах вариации, - наи­более простой из показателей, характеризует абсолютные разме­ры изменения признака и определяется как разница максимально­го и минимального значений признака:

Несмотря на простоту расчета, этот показатель имеет важный не­достаток - учитывает только два приграничных значения. В случае аномальности одного или двух приграничных значений, он может исказить действительную вариацию совокупности.

Для того чтобы избавиться от этого недостатка, рассчитывают отклонение каждой индивидуальной величины от средней по со­вокупности. Таким образом, учитывается значение каждой еди­ницы совокупности. Для того чтобы охарактеризовать это откло­нение одним числом, рассчитывают среднюю из этих значений. Данный показатель носит название среднее абсолютное (линей­ное) отклонение и определяется следующим образом:

Простой вид;

- взвешенный вид (для сгруппированных данных);

где d(L) - среднее абсолютное (линейное) отклонение;

х - индивидуальное значение признака (варианта);

Среднее из значений признака;

п - численность совокупности;

f - частота.

Среднее линейное отклонение характеризует средний размер отклонений индивидуальных значений признака от средней вели­чины. Таким образом, он характеризует абсолютные размеры ва­риации, имеет те же единицы измерения, что и признак, вариа­цию которого характеризует.

Недостаток: ввиду того, что применяется модуль, затруднено проведение математических операций. Поэтому он применяется редко.

Для того чтобы избавиться от недостатка предыдущего показате­ля, разницу между индивидуальным значением и средней возве­дем в квадрат и затем извлечем корень квадратный из полученно­го среднего значения. Полученный показатель будет называться среднее квадратическое отклонение:

- простая.

- взвешенная.

Играет ту же роль, что и среднее абсолютное отклонение, но, имеет перед ним одно преимущество, а именно, с ним проще проводить математические операции. Ввиду этого в 90 случаях из 100 используется этот показатель.

Еще более удобный для математических преобразований показа­тель вариации - дисперсия, который представляет собой сред­нее квадратическое отклонение в квадрате:

- простая,

- взвешенная.

С помощью дисперсии и среднего квадратического отклонения измеряются взаимосвязи между различными признаками. Кроме того, по этим показателям можно сравнивать совокупности в смысле их однородности по одинаковым признакам.

Вывод об однородности совокупности позволяет сделать коэффициент вариации , который может быть рассчитан несколькими способами в зависимости от исходной информации:

Характеризует средний процент отклонений индивидуальных значений признака от средней величины.

,

,

,

где V – коэффициент вариации;

σ – среднее квадратическое отклонение;

d (L) – среднее линейное отклонение;

Х МО – мода (структурная средняя);

Х МЕ – медиана(структурная средняя).

Коэффициент вариации имеет большое значение. Он позволяет сравнивать уровень вариации по различным признакам и используется для характеристики однородности совокупности. Если коэффициент вариации меньше 33%, то совокупность однородна.

Пример расчета показателей вариации.

Распределение студентов вуза по возрасту характеризуются следующими данными (табл. 1):

Таблица 1

Рассчитайте показатели, характеризующие вариацию возраста студентов для каждой формы



обучения. Сравните полученные результаты.

Рассчитаем показатели вариации, характеризующие совокупность студентов очно-заочной формы

обучения.

1. Размах вариации:

R = x max – x min = 31 - 18,5 = 12,5 (лет)

2. Средняя арифметическая:

3. Среднее линейное отклонение:

Возраст отдельно взятого студента отклоняется от среднего по совокупности возраста - 27 лет - на 3 года. То есть можно утверждать, что возраст наибольшего числа студентов не будет выходить за границы интервала: от 24,3 до 30,4 лет.

27,36 - 3,07 < 27,36 < 27,36+ 3,07.

Среднее квадратическое отклонение:

Среднее квадратическое отклонение также характеризует абсолютную величину отклонения индиви­дуального значения от средней. Как правило, значение среднего квадратического отклонения больше среднего линейного отклонения.

Дисперсия:

=13,899

Характеризует квадрат отклонений индивидуального значения от средней величины. Коэффициент вариации:

Средний процент отклонений индивидуальных значений от средней величины составляет 13,6%. Со­вокупность однородна. Сделаем аналогичные расчеты по совокупности студентов дневного отделения. Получаем следующие результаты:

d(L) = 3,40

V = 21,9%

На основании приведенных расчетов можно сделать вывод о том, что совокупность студентов очно-заочного отделения более однородная.

Расчет показателей вариации - достаточно трудоемкий процесс. В некоторых случаях, когда имеется ряд показателей с равноот­стоящими моментами времени или равноинтервальный ряд рас­пределения, расчет может быть упрощен. Сокращенные способы расчета дисперсии базируются на знании свойств дисперсии. Свойства дисперсии:

Если от всех значений варианты х отнять (прибавить) по­стоянное число А, то дисперсия не изменится;

Если каждое значение варианты разделить (умножить) на постоянную величину к, то дисперсия уменьшится (увеличится) в к 2 раз.

Сокращенные способы расчета дисперсии:

2. Способ моментов – применяется только в случае равенства интервалов.

Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.

Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.

Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :

Этот закон распределения может быть получен из различных теоретических предпосылок, в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.

Среднее арифметическое

Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :

a - среднее арифметическое,

a i - измеренное значение на i-м шаге.

Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.

Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

2 - дисперсия,
a - среднее арифметическое,
n - число измерений параметра,

Среднеквадратическое отклонение

Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:

, где


a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Коэффициент вариации

Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :

, где

V - коэффициент вариации,
- среднеквадратическое отклонение,
a - среднее арифметическое.

Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

Среднее линейное отклонение

Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:

, где

_
a - среднее линейное отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.

Показатель асимметрии

Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:

, где

А - показатель асимметрии,
- среднеквадратическое отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Показатель эксцесса

Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:

, где

Коэффициент вариации – это один из наиболее применимых в финансовой сфере статистических коэффициентов. Расскажем, как рассчитать коэффициент вариации и чем он может пригодиться финансовому директору.

Что такое коэффициента вариации и зачем он нужен

Коэффициент вариации (Coefficient of variation, или CV) – это мера относительного разброса случайной величины. Он показывает, какую долю составляет средний разброс случайной величины от среднего значения этой величины.

В общем случае коэффициент вариации используют для определения дисперсии значений без привязки к масштабу измеряемой величины и единицам измерения. Коэффициент вариации входит в группу относительных методов статистики, измеряется в процентах и поэтому его можно использовать для сравнения вариации нескольких не связанных между собой процессов и явлений.

Использование коэффициента вариации в финансовом моделировании

Коэффициент вариации является лидером среди вариационных статистических методов, которые используют финансовые и инвестиционные аналитики.

Аналитики используют коэффициент:

  1. Для определения устойчивости прогнозной модели.
  2. Для сравнения нескольких прогнозных моделей (в основном инвестиционных) с разными абсолютными уровнями дохода и риска.
  3. Для проведения XYZ анализа.

Формула расчета коэффициента вариации

Коэффициент вариации рассчитывается по формуле:

где CV – коэфф вариации,

σ – среднеквадратическое отклонение случайной величины,

tср – среднее значение случайной величины.

Формула коэффициента вариации для инвестиционных финансовых моделей:

где NPV – чистый приведенный доход.

Формула коэффициента вариации для инвестиций в ценные бумаги:

где:%год – доходность по ценной бумаге в % годовых.

Коэффициент вариации в Excel

=СТАНДОТКЛОНПА(диапазон значений)/СРЗНАЧ (диапазон значений)

Или с использованием встроенного пакета «Анализ данных».

Анализ коэффициента вариации

Коэффициент вариации более универсален, в отличие от дисперсии и среднеквадратического отклонения, потому что позволяет сопоставлять риск и доходность двух и более активов, которые могут существенно отличаться. Правда, у метода оценки пары доходность/риск с помощью коэффициента вариации есть ограничения. Если ожидаемая доходность стремится к нулю, то значение коэффициента вариации стремится к бесконечности. И даже незначительное изменение ожидаемой доходности проекта (или ценной бумаги) приводит к значительному изменению коэффициента, что необходимо учитывать при обосновании инвестиционных решений.

  • меньше 10%, то степень риска проекта является незначительной,
  • от 10% до 20% – средней,
  • больше 20% – значительной,
  • если значение коэффициента вариации больше 33%, то финансовая модель считается неоднородной, неустойчивой. По ней нельзя принимать объективных инвестиционных решений

Примеры расчета коэффициента вариации в Excel

Пример 1

Первый – открытие сети розничных точек для торговли ювелирными изделиями в Москве и Санкт-Петербурге.

Второй – открытие сети розничных точек по всей России в городах-миллионниках.

Финансовый аналитик предприятия составил финансовые модели обоих проектов в Excel и по модели Монте-Карло сделал по 5000 прогонов для NPV в каждом проекте (см. также, как создать наглядную финансовую модель в Excel ). Далее с помощью пакета анализа «Анализ данных» получил следующие статистические показатели (см. таблицы 1 и 2).

Таблица 1 . Показатели по проекту 1

Средний предполагаемый NPV от Проекта 1 составит 14,05 тысяч долларов, дисперсия (она же среднее квадратическое отклонение) будет равна 1,72 тысяч долларов.

Коэффициент вариации для первого проекта равен:

CV = 1.72/14.05 = 12%

Проект признается среднерисковым.

Средний предполагаемый NPV от Проекта 2 составит 25,23 тысяч долларов, дисперсия будет равна 6,30 тысяч долларов.

Коэффициент вариации для второго проекта составит:

CV = 6,30/25,23 = 24,97%

Проект признается высокорисковым.

Если сравнивать проекты 1 и 2 по коэффициенту вариации, то следует выбрать Проект 1, так как соотношение доход/риск у него лучше.

Пример 2

Компания «Сигма» проводит XYZ анализ товарного ассортимента по показателю изменчивости продаж. Продуктовая линейка компании представлена пятью товарами: А, В, С, D и E.

Имеется помесячная статистика продаж за последний год по каждому товару (см. рисунок). На практике лучше иметь статистику за период более трех лет/

Рисунок . Статистика продаж за последний год по каждому товару

Финансовый аналитик компании рассчитал коэффициент вариации для каждого товара

CVа = СТАНДОТКЛОНПА(B2:В13)/СРЗНАЧ (В2:В13) = 30%

В компании установлены следующие интервалы для групп XYZ:

Z – 31–100%.

Значит, товары B и D относятся к категории X. Спрос на них постоянный, запасы на складах по ним должны быть под пристальным контролем и постоянно пополняться.

Товары A и C относятся к категории Y. Спрос на них отклоняется в пределах 30% от месяца к месяцу. Возможно, имеет место сезонность спроса. Нужно глубже анализировать статистику продаж и выработать оптимальную политику по остаткам на складах для данной группы.

Товар E имеет наиболее волатильный спрос, продажи по нему осуществляются нерегулярно, поэтому возможно имеет смысл перейти на работу с ним по предзаказу.

Выводы

Следует помнить, что коэффициент вариации – это не единственный способ оценки эффективности инвестирования, так как он не учитывает несколько важных факторов:

  1. Объемы первоначального инвестирования.
  2. Возможную асимметричность распределения. При расчете коэффициента вариации предполагается, что разброс значений случайной величины расположен симметрично к среднему (часто по нормальному распределению). Но это не всегда соответствует действительности. Например, для опционов, доходность которых не может быть ниже нуля, имеет место асимметрия распределения, и анализировать коэффициент вариации по ним нужно с оглядкой на другие методы статистического анализа.
  3. Инвестиционную политику субъекта инвестирования.
  4. Другие нечисловые факторы.

Однако метод оценки статистических, в том числе финансовых, данных посредством расчета коэффициента вариации заслуженно признан одним из наиболее эффективных сравнительных методов статистики.



 

Возможно, будет полезно почитать: