С чем связаны суточные вертикальные перемещения планктона. Вертикальные миграции зоопланктона

Популяциям многих представителей планктона свойственны массовые перемещения, регулярно повторяющиеся в пространстве и во времени. Они совершаются в вертикальном и горизонтальном направлениях, в те участки ареала, где в данное время наиболее благоприятные условия. Таким образом, миграции позволяют популяции маневреннее использовать жизненные ресурсы в соответствии с изменением их расположения в пространстве и времени, а также в связи с потребностями самих организмов.

Вертикальные миграции . В вертикальных миграциях наибольшее значение имеют суточные, сезонные и возрастные (онтогенетические).

Суточные миграции, свойственные многим представителям фито - и зоопланктона, отличаются многообразием своего проявления: сроками, амплитудой, направлением, скоростью и другими особенностями. По-видимому, столь же разнообразно и их экологическое значение, во многих случаях ещё не расшифрованное, трактуемое на уровне гипотез. Особенно сложна картина суточных миграций зоопланктонтов. Большинство их в тёмное время суток концентрируются у поверхности, днём Ї в более глубоких слоях. Заметно реже наблюдаются инвертированные миграции, при которых животные сосредоточиваются у поверхности днём и держатся на глубине ночью (Константинов, 1986).

Как указывалось выше, механизм суточных вертикальных миграций и их экологический смысл до конца не ясны. Некоторые авторы рассматривают миграционные перемещения как пассивный процесс, вызываемый изменением скорости переноса организмов вертикальными токами воды, особенно внутренними волнами, имеющими по некоторым компонентам 12 - и 24-часовую периодичность. Другие авторы акцентируют внимание на изменение скорости погружения организмов при циклическом чередовании дневных и вечерних температур, сопровождающемся соответствующей модуляцией условий плавучести (изменение плотности и вязкости воды). Третья гипотеза строится на представлении о периодичности локомоторной активности, стимулируемой или ингибируемой различными внешними воздействиями, в первую очередь светом и температурой; погружение происходит пассивно, подъём Ї за счёт активных движений. Эта гипотеза имеет больше сторонников, чем первая и вторая. Важно отметить, что вертикальные миграции у организмов с нейтральной плавучестью неизвестны (Рудяков, 1977, цит. по Константинов, 1986).

Ещё не менее ясен экологический смысл миграций, их адаптивное значение, которое некоторые авторы вообще отрицают, полагая, что эволюция шла по пути утраты миграционного поведения - автоматического следствия несовершенства регуляции плавучести, неспособности обеспечить её нейтральность (Константинов, 1986).

М.М. Кожовым, Б.П. Мантейфелем и рядом других исследователей развито представление о защитно-кормовом значении суточных вертикальных миграций. В тёмное время суток планктонные животные-фитофаги питаются в верхних слоях воды, где наблюдается наиболее высокая концентрация водорослей, а на светлое время суток уходят вглубь, тем самым резко уменьшая свою доступность для рыб - зоопланктофагов. Однако, рыбы и другие планктофаги в качестве контрадаптации также поднимаются к поверхности в вечернее время и используют сумерки для интенсивного питания.

Наряду с фактами, свидетельствующими в пользу представления о защитном значении вертикальных суточных миграций, имеется много других, противоречащих этой гипотезе (Виноградов, 1968, цит. по Константинову, 1986): существуют миграции на небольшую глубину, не спасающие мигрантов от поедания рыбами; некоторые формы поднимаются к поверхности ночью, другие - днём.

Ж. Маклареном (цит. по Константинов, 1986). высказано мнение, что в условиях прямой температурной стратификации воды суточные миграции выгодны энергетически, так как на глубине в условиях более расход энергии на рост и развитие ниже. Пребывание в холодной воде ведёт к увеличению размера мигрантов и повышению плодовитости. Это создаёт демографические преимущества для тех форм, у которых размер тела и плодовитость находятся в обратной зависимости от температуры. Для питания животные поднимаются в верхние слои, где корма больше, а после откорма погружаются вглубь. Подъём к поверхности в ночное время не случаен, так как даёт известные преимущества (снижение выедаемости). Свет служит основным сигнальным фактором, регулирующим периодичность миграционной активности, эндогенная ритмика имеет корригирующее значение.

В водных экосистемах на распределение организмов по слоям большую роль оказывают гидрологические особенности воды, в первую очередь это солёность и температура. В связи с этим морские организмы можно подразделить на три группы: психрофильные, обитающие при низких температурах, мезофильные - в диапазоне средних температур и термофильные, обитающие при высоких температурах.

Горизонтальные миграции . Горизонтальное распределение черноморского зоопланктона неравномерное. Особенно богата им северо-западная часть моря вследствие значительного притока пресных вод (Дунай, Днестр, Днепр и др. большие реки), содержащих биогенные соли. Сравнительно хорошо развивается планктон в заливах, а также к юго-востоку от Крымского полуострова. Обилие зоопланктона в этой акватории связано с водами, богатыми биогенными солями. Кроме того, в центральных областях моря обнаружены районы, богатые зоопланктоном вследствие подъёма на поверхность глубинных вод (Вылканов и др., 1983).

Значительное влияние на распределение зоопланктона, особенно в мелководных районах и поверхностных слоях, оказывают ветры. В летние месяцы часто сильные сгонные ветры относят верхний, богатый зоопланктоном слой на десятки миль от берега, а на его место из глубин поднимаются холодные массы, сравнительно бедные зоопланктоном, состоящим из холодноводных видов. Вертикальное распределение зоопланктона хорошо выражено. Нижняя граница его распространения в Чёрном море почти всюду определяется проникновением кислорода на глубины 100-175 м и только на юго-западе под воздействием антициклонического течения спускается до 225 м.

Зоопланктон имеет специфическое распределение по сезонам и глубинам, которое обусловливается температурными и трофическими потребностями его и изменением солёности вод. Одна часть зоопланктона не зависит от температуры воды, т.е. эвритермна, и встречается круглый год чаще всего на глубинах 15-50 м. Другая часть зоопланктона предпочитает более низкие температуры, т.е. криофильна. Зимой криофилы встречаются на всех глубинах, а с наступлением лета они спускаются ниже 50-60 м, где температура относительно постоянная. Осенью в связи с похолоданием и перемешиванием воды они снова поднимаются на поверхность. Третья группа видов зоопланктона теплолюбивая (термофильная) - встречается только или преимущественно летом. С потеплением воды количество термофильных зоопланктёров увеличивается, достигая максимума в конце лета или в начале осени; зимой зоопланктон исчезает. К этой категории относятся водные блохи и некоторые веслоногие рачки (рода Centropages).

Вертикальные суточные перемещения составляют характерную черту поведения многих свободно плавающих планктонных растений и животных . Мельчайшие организмы - бактерии и диатомовые водоросли - входят в состав флоры и фауны морей наряду с неисчислимым множеством сине-зеленых водорослей и жгутиковых. Они-то и определяют существование зоопланктона, к которому относятся также простейшие, медузы, личиночные формы морских ежей, моллюски, мальки рыб и - личиночные, так и взрослые формы.

Это колоссальное разнообразие микроскопических животных является источником пищи для мелких , которые сами служат пищей для более крупных рыб, хищных головоногих моллюсков , тюленей, и морских птиц. Усатые киты питаются планктонными ракообразными, или крилем, который они отцеживают, пропуская воду сквозь свои "усы".

Ночные миграции зоопланктона с глубины, по меньшей мере, 200 м к поверхности моря известны с 1872 года, когда они впервые были обнаружены кругосветной океанографической экспедицией на судне "Челленджер", продолжавшейся три с половиной года. Последующие исследования позволили установить, что это явление распространено повсеместно и представляет собой один из наиболее поразительных аспектов жизни планктона. Тем не менее, даже теперь эти миграции ни в коей мере нельзя считать полностью изученными.

Большинство планктонных видов избегают сильного света, причем для каждого характерен свой, предпочитаемый им уровень освещенности. Поэтому в поверхностных слоях моря в дневное время обнаруживаются очень немногие организмы, остальные рассредоточены на различной глубине в зависимости от их специфической реакции на освещение. В сумерках планктонные формы, как правило, поднимаются к поверхности воды; когда же полностью стемнеет, и световые стимулы исчезают, они распределяются по различным глубинам. На восходе солнца они снова поднимаются к поверхности, а затем вновь погружаются по мере нарастания освещенности.

Не вызывает сомнений, что растения, или фитопланктон, обычно скапливаются на такой глубине, где они получают наилучшую для фотосинтеза освещенность, равно как и то, что животные выбирают глубины, на которых они максимальным образом обеспечены пищей. Этим объяснением, однако, отнюдь не исчерпывается явление вертикальных миграций фито- и зоопланктона, поскольку нередко наблюдается обратная зависимость между распределением растительного и животного планктона.

Суточные миграции встречаются даже у глубоководных животных, например вертикальные перемещения обитателей больших глубин в Саргассовом море явно связаны со сменой дня и ночи. Но максимальная глубина проникновения солнечного света, составляющая в чистой воде около тысячи метров, не единственный фактор, определяющий вертикальное распределение животных. Немаловажную роль играют также заметные изменения с глубиной температуры и солености воды, содержания кислорода и фосфатов. Естественно предположить, что большинство относительно крупных планктонных животных удерживаются на глубинах более тысячи метров в результате взаимодействия всех перечисленных выше факторов.

Суточными миграциями планктонных животных управляют следующие факторы , перечисленные по мере уменьшения их значимости. Свет - доминирующий над всеми остальными фактор; температура, приобретающая большое значение, даже перекрывающая роль света в тех случаях, когда она выше 20°С; и наконец, соленость и аэрация. Организмы удерживаются на определенной глубине путем ускорения или замедления движений, реагируя на свет, земное притяжение и т. д. Этот механизм представляет собой комбинированную реакцию на совокупность нескольких факторов и, по данным лабораторных экспериментов, различен у разных видов.

Суточный цикл вертикальных миграций планктонных ракообразных
состоит из четырех фаз: вечернего подъема с глубины, ночного погружения, подъема на рассвете и дневного погружения. Вечерний подъем и дневное погружение связаны соответственно с уменьшением и увеличением освещенности. Ночное погружение, вероятно, является результатом пассивного состояния организма в полной темноте, а всплывание на рассвете возвращает животных на глубины с оптимальной освещенностью.

Недавние эксперименты с показали, что эти ракообразные совершают полный цикл вертикальной миграции в аквариуме с подкрашенной тушью водопроводной водой. Всплывание "на рассвете" при низкой освещенности сменяется погружением животных на характерную максимальную глубину, затем при уменьшении освещенности животные снова всплывают к поверхности и, наконец, обнаруживают типичное ночное погружение. При этом искусственная освещенность на глубинах, на которые погружались животные, примерно совпадала с наблюдавшейся в естественных условиях.

Оптимальная освещенность - действительно важный фактор, определяющий вертикальную миграцию планктонных организмов, однако определенную роль играет и множество других обстоятельств. Некоторые животные, обычно уходящие днем на глубину, иногда встречаются на поверхности при ярком солнечном свете. Эксперименты с тралением на различных глубинах показали, что не все особи одинаково реагируют на один и тот же набор внешних условий. Даже в ситуации, когда большинство организмов перемещаются вверх, к поверхности воды, часть обычно остается на глубине.

Как объясняет одна из теорий, вертикальные миграции позволяют пассивно дрейфующим животным постепенно менять условия своего существования, и именно с этим связано их эволюционное возникновение. Водные массы на различных глубинах редко перемещаются с одинаковой скоростью; как правило, поверхностные слои движутся быстрее глубинных. Плывя лишь в горизонтальном направлении, животное в море почти не изменит условий своего существования, тогда как, перемещаясь вверх и вниз, оно достигнет много большего. Вертикальные суточные миграции планктона обнаружены всюду и явно выполняют приспособительные функции, однако в настоящее время их природа и относительное значение еще не могут быть в должной мере оценены.

Литература: Джон Клаудсли-Томпсон. Миграция животных. Ярославль, 1981

Уже давно высказывалось предположение, что планктонные животные, совершающие регулярные суточные миграции (поднимаясь к поверхности вечером и опускаясь на глубину утром), могут вносить свой вклад в перемешивание разных слоев, а тем самым способствовать обогащению поверхностных вод биогенными элементами и повышению продукции фитопланктона. Однако только недавно в одной из бухт на юго-западном побережье Канады удалось инструментально зафиксировать резкое повышение турбулентности в период массового подъема к поверхности воды рачков Euphasia pacifica .

Водная толща океана только на первый взгляд кажется гомогенной и равномерно перемешиваемой. На самом деле в любом более или менее крупном водоеме ветровое перемешивание обычно затрагивает только поверхностный слой. Ниже этого слоя, который к тому же хорошо прогревается солнечным лучами, идет зона термоклина (thermocline ) — соприкосновения теплого и холодного слоев воды, — где с глубиной резко снижается температура (и, соответственно, увеличивается плотность). А еще ниже располагается огромная масса глубинных вод, слабо перемешиваемых и отличающихся низкой температурой, почти одинаковой на очень большом протяжении.

Поскольку освещенность в толще воды быстро убывает с глубиной, фотосинтез возможен только в поверхностных слоях. В океане это верхние 50-100 м. Именно здесь сконцентрирована основная масса фитопланктона — микроскопических водорослей и цианобактерий, создающих то органическое вещество, за счет которого существует великое множество организмов — от мелких планктонных рачков до громадных китов. Однако развитие фитопланктона ограничивается не только недостатком света, но и нехваткой некоторых необходимых для его роста химических элементов. И если углерода (в виде СО 2) в воде обычно бывает с избытком, то азота и фосфора в минеральной (то есть пригодной для использования водорослями и цианобактериями форме) в поверхностных водах нередко не хватает. В глубинных водах азота и фосфора содержится гораздо больше, а там, где они поднимаются к поверхности, например в районах апвеллинга (upwelling ), наблюдается высокая продукция фитопланктона.

То, что крупные животные своим движением способствуют перемешиванию водной толщи, не вызывало сомнений (см., например, о нырянии кашалотов — Кашалот добывает пищу щелканьем и жужжанием , «Элементы», 10.05.2006). Но то, что заметный вклад в этот процесс могут вносить планктонные ракообразные, казалось маловероятным, хотя и в морях и в озерах эти мелкие животные ежесуточно совершают вертикальные миграции — поднимаются к поверхности ночью (в темное время суток) и опускаются в более глубокие слои воды днем (в светлое время суток). Смысл подобных миграций планктонных животных в том, чтобы оказаться в тех слоях водной толщи, где много пищи (фитопланктона), но только в то время суток, когда это безопасно , когда невелики шансы самим стать жертвами хищников — мелких рыб. Поскольку рыбы в процессе охоты на зоопланктон полагаются прежде всего на зрение, наиболее безопасное для зоопланктона время — это темные ночные часы. Самим планктонным животным свет для питания не нужен. С равным успехом они отфильтровывают фитопланктон и в полной темноте.

Значимость вертикальных миграций планктонных ракообразных для усиления турбулентного перемешивания показал недавно Эрик Кунзе (Eric Kunze) со своими коллегами из Школы наук о земле и океане при Университете Виктории (Британская Колумбия, Канада). Работа, опубликованная в одном из последних номеров журнала Science , суммирует результаты исследований, проведенных на юго-западе Канады в бухте Саанич (Saanich Inlet), отходящей от пролива Джорджия (он отделяет остров Ванкувер от города Ванкувер). Сама бухта довольно глубокая (240 м), но от моря ее отгораживает узкое горло с мелководьем. Поэтому толща воды в бухте очень плохо перемешивается, а ниже глубины 100 м простирается анаэробная (лишенная кислорода) зона. В зоопланктоне, который встречается только в верхних 100 метрах водной толщи, доминируют крупные (длиной 0,5-2 см) рачки из семейства эуфазиид Euphasia pacifica , известные широкой публике под названием «криль». Днем они держатся на глубине 70-80 м — над анаэробной зоной, но с наступлением сумерек поднимаются к поверхности, где находится основная масса их пищи — фитопланктон.

Используя эхолоты, а также датчики, измеряющие интенсивность турбулентности, Кунзе с коллегами показал, что при вечернем подъеме и утреннем опускании рачков в течение 10-15 минут интенсивность турбулентности на некоторых глубинах возрастает в 100-1000 раз. Задача будущих исследований — рассчитать тот вклад, который вносит вызванное рачками перемешивание слоев в увеличение продукции фитопланктона. Однако не следует думать, что рачки специально совершают миграции ради увеличения своей кормовой базы. Всё же это только побочное следствие их поведения, направленного на то, чтобы обеспечить себя пищей и не стать при этом добычей рыб. Необходимо также иметь в виду, что эуфазииды — довольно крупные рачки. Эффект от миграций веслоногих ракообразных (представителей отряда Copepoda ), распространенных более широко и достигающих более высокой численности, видимо, гораздо слабее в силу их небольших размеров.

Как Вы полагаете, с чем могут быть связаны суточные вертикальные перемещения планктона?

Этот вопрос допускает двоякое толкование. С одной стороны, можно говорить о том, что служит сигнальным фактором для организмов зоопланктона, то есть о том, как они узнают, что настает пора двигаться вверх или вниз. С другой - порассуждать о том, каков биологический смысл вертикальных миграций, то есть в чем адаптивное преимущество мигрирующих видов зоопланктона перед немигрирующими.
Что касается ответа на первую часть вопроса, то он однозначен. Известно, что организмы зоопланктона ориентируются по свету (ночью обычно поднимаясь в верхние слои). Сложнее обстоит дело с адаптивным значением вертикальных миграций.
Первая гипотеза - зачем нужны зоопланктону миграции - состоит в том, что подъем в верхние слои воды необходим для питания, поскольку там наибольшая концентрация планктонных водорослей. Днем же, когда вода в верхних слоях нагревается, приходится опускаться в глубину, поскольку при высокой температуре планктонные организмы, как и вообще все организмы с непостоянной температурой тела, имеют слишком высокую интенсивность метаболизма, а при этом чрезмерное количество питательных веществ сжигается при дыхании.
Эта гипотеза выглядит вполне правдоподобной, поскольку многие планктонные организмы действительно не переносят очень теплой воды и могут находиться в верхних слоях воды, только пока температура не слишком высока, а большую часть летнего времени вынуждены проводить на глубине. Однако экспериментальной проверки гипотеза не выдерживает. В лабораторных экспериментах дафнии, которые в природе совершают вертикальные миграции, быстрее растут и лучше размножаются в условиях, соответствующих постоянному нахождению животных в верхних слоях воды, чем в условиях, имитирующих суточные миграции (низкая температура и низкая концентрация пищи в дневное время). Не находит подтверждения и предположение о том, что зоопланктон «предпочитает» кормиться только по ночам в связи с большей питательностью водорослей, успевших за световой день накопить соответствующие вещества.
Другие гипотезы связаны с предположением, что в дневное время в верхних слоях воды планктонных животных подстерегают те или иные опасности. Можно упомянуть гипотезу о том, что уход в светлое время суток на глубину - приспособление для защиты от вредного воздействия ультрафиолетовых лучей. Однако наиболее верной представляется гипотеза, связанная с воздействием хищников. Очень многие рыбы, питающиеся планктоном, находят и ловят своих жертв, пользуясь зрением, и эффективность их охоты значительно снижается в темноте. Значит, уходя днем в темные глубины водоемов, зоопланктон спасается от поедания хищником. Эта гипотеза подтверждается многими фактами.
Например, одни и те же виды планктонных ракообразных совершают суточные миграции в тех водоемах, где обитают рыбы-планктофаги, и не мигрируют в тех озерах, где этих рыб нет.

Для сообществ зоопланктона характерны горизонтальные и вертикальные миграции, последние бывают непериодическими и периодическими (суточные и сезонные). Цель работы - изучение суточной динамики состава и структуры зоопланктона Кыгинского залива Телецкого озера в период весеннего нагревания (май) и прямой летней стратификации (август).[ ...]

А. Представители зоопланктона Коловратки: 1 - Asplanchna, 2 - Notholca (пустой панцирь). Веслоногие рачки; 3- Macrocyclops (Cyclopoidea); 4 - Senecella (Calanoida). В. Зоонейстон. / -жук-вертячка Dlneutes (сем.[ ...]

В лабораторных экспериментах на доминирующих представителях зоопланктона G. lacustris и A. salinus минерализованного оз. Шира (Республика Хакасия; ширина - 5 км, длина - 9 км, максимальная глубина - 22 м) изучали характер межвидовых взаимодействий, влияющих на (а быть может, определяющих) вертикальное распределение зоопланктона и его суточные вертикальные миграции.[ ...]

Поразительным примером суточной периодичности в водоемах служит вертикальная «миграция» зоопланктона в морях и озерах. Веслоногие и ветвистоусые рачки, различные личиночные формы и т. п., образующие мощные скопления планктона, ночью обычно движутся вверх, к поверхности воды, а днем - вниз (фиг. 71). Хотя очевидно, что свет играет здесь роль контролирующего фактора, эти суточные миграции весьма сложны и их физиологические механизмы не вполне выяснены. Разные виды, а иногда и разные стадии одного вида реагируют на внешние условия по-разному; поэтому организмы не стремятся скапливаться все в одном месте, однако в целом стратификация выявляется днем значительно более четко, чем ночью.[ ...]

В период гидрологического лета с постепенным повышением-температуры воды и стимулированием размножения теплолюбивых форм зоопланктона в Главном плесе водохранилища возрастает роль кладоцер и увеличивается численность летних веслоногих (Mesocyclops), наибольшая биомасса которых с учетом суточных вертикальных миграций наблюдается соответственно в средних и придонных слоях или распределена относительно равномерно по всей толще воды (Рыбинское водохранилище.. 1972).[ ...]

Повышенная концентрация рыб в районе полигона (табл. 29) „ определяется устойчиво высокими биомассами кормовых организмов (бентических и зоопланктонных). Биомасса бентоса здесь была в 2-5 раз, а зоопланктона в 1,5 раза выше, чем на русле вверх по р. Каме. Определенное значение имеет и тот факт, что полигон расположен как бы на перекрестке путей миграции (нерестовых, нагульных, и, возможно, зимовальных) многих видов рыб сразу с трех сторон: сверху и снизу по Волге и сверху по Каме.[ ...]

Угорь обыкновенный. Он относится к отряду угреобразных. Нагуливается в пресных водах Европы, размножается в Саргассовом море при солености воды 37 промилле, при температуре воды 16-17 °С. Совершает нерестовые миграции на расстоянии 4000-7000 км. После нереста производители погибают. Оплодотворенная икра развивается в толще воды. Личинки прозрачные, ланцетовидной формы, подхватываются теплым течением - Гольфстримом, которое в течение 2,5-3 лет несет их к берегам Европы, затем они массой входят в устья рек, особенно Англии, Франции и ФРГ и частично СССР (река Нарва). В низовьях рек они пигментируются и превращаются в молодь, затем поднимаются в верховья рек, проникают в придаточные озера, лиманы, в которых нагуливаются. В течение 6-10 лет достигают половозрелости, скатываются вниз по рекам в море и мигрируют к местам размножения в глубинных слоях воды, где имеется течение, обратное Гольфстриму. Обычный размер скатывающегося угря из водоемов нагула 32-72 см и масса 500-800 г. Мясо содержит 22-32 % жира. Питается нагуливающийся угорь рыбой, донными ракообразными, червями. Личинки во время миграции питаются зоопланктоном.[ ...]

Использование уравнений турбулентной диффузии для описания переноса рассматриваемых в модели субстанций достаточно обосновано только для растворенных в воде неорганического фосфора и неорганического азота, а также для растворенного в воде кислорода. Применение этих уравнений для фитопланктона, а тем более для зоопланктона, требует специальных оговорок. Поскольку фитопланктон считается гидродинамически нейтральным, то вполне обоснованно допускать его перенос течениями. Включение же в уравнение для фитопланктона диффузионного члена может привести к завышенным значениям концентрации фитопланктона в гиполимнионе. Поэтому в уравнении для фитопланктона (6.2.1) коэффициенты vx, vy и v задаются существенно меньшими, чем в уравнениях (6.2.5)-(6.2.7). Зоопланктон нельзя считать гидродинамически нейтральным, так как он имеет собственную динамику в воде - суточные вертикальные миграции. Поэтому применение уравнения (6.2.2) для него в достаточной мере условно. Тем не менее использование этого уравнения в работах В. В. Астраханцева и коллег (Астраханцев и др., 1992; Astrakhantsev et al., 1996) позволило достаточно адекватно воспроизвести как общую биомассу зоопланктона, так и характер его распределения по акватории. Здесь уместно отметить, что вычислительные алгоритмы, реализации модели, позволяют приравнивать коэффициенты v , vr и vz в (6.2.2) к нулю.[ ...]

Влияние водохранилищ на ландшафты прилегающей территории различно в районе верхнего бьефа (изменение уровня, гидродинамическое воздействие на переформирование берегов, затопление почв и возникновение метилированных форм тяжелых металлов, гидрогеологические явления в виде фильтрации и подпора грунтовых вод, в перспективе - климатические изменения, заиливание и эвтрофикация водохранилища) и нижнего бьефа (эрозия русла и берегов, препятствие миграции рыб, вибрация, накопление погибшего фито- и зоопланктона).[ ...]

Химическое воздействие сельскохозяйственной техники заключается в загрязнении воздуха, почвы и водоемов химическими веществами, использующимися и образующимися при работе двигателей и других агрегатов, проведении технических уходов, промывке карбюраторов, консервации техники. В результате в почву попадают химические продукты, которые отрицательно сказываются на живых организмах, замедляют почвообразовательные процессы. Кроме того, с током ливневых, талых и грунтовых вод происходит миграция химических веществ в водоемы, что приводит к гибели зоопланктона и рыбы.[ ...]

Свет является важнейшим абиотическим фактором, особенно для фотосинтезирующих растений (фототрофов). Уровень фотосинтеза зависит от интенсивности солнечной радиации, качественного состава света, распределения света во времени. Однако для других организмов его значение по сравнению с температурой является меньшим, поскольку известны многие виды бактерий и грибов, которые могут длительно размножаться в условиях полной темноты. Различают светолюбивые, теплолюбивые и тепловыносливые растения. Для многих животных зоопланктона свет является сигналом к вертикальной миграции, в результате чего днем они остаются на глубинах, тогда как ночью поднимаются в теплые, богатые кормом верхние слои воды. Для животных, обладающих зрением, наиболее успешно добывание пищи в светлое время.[ ...]

К исходу суток обилие фитопланктона редко возвращается к начальному, что наблюдалось также в условиях стратифицированного Сиверского озера (Маркевич и др., 1982). Из трех рассматриваемых для водохранилищ случаев в одном отмечен тренд к нарастанию хлорофилла, в другом - к снижению, а в третьем - отсутствию каких-либо изменений. Вероятно каждая ситуация зависит от фазы сезонной сукцессии сообщества. Суточные флуктуации активности фитопланктона связаны с изменениями скоростей фотосинтеза и клеточного деления, питательных потребностей, плавучести, биолюминесценции и т.д. Обилие водорослей в течение суток регулируется ритмикой их размножения (Елизарова, 1982), ритмикой питания зоопланктона (Крючкова, 1989), миграциями подвижных форм и переносом с токами воды “пассивных”. Репродукция фитопланктона происходит в основном в вечерние или ночные часы, а потребление фитофагами - в ночное время (Maulood et al., 1978). Суточный период, соизмеримый со скоростями роста водорослей, рассматривается как некий экологический масштаб, в пределах которого реализуются механизмы физиологической адаптации, позволяющие оптимизировать удельную фотосинтетическую продуктивность (Reynolds, 1990). В ответ на изменения освещенности изменяется содержание пигментов в клетке. В этом проявляется хроматическая адаптация, происходящая в период, соизмеримый с временем генерации (от нескольких часов до нескольких суток), и у новых поколений развиваются новые фото-синтетические возможности.[ ...]

Эхолот, который так полезен для измерения глубины в навигационных целях, достаточно чувствителен, чтобы регистрировать местонахождение скопленией животных («ложное дно», «призрачное дно», «глубоководный звукорассеивающий слой»). Они-то и явились причиной появления звукорассеивающего слоя. Отражающие слои, по-видимому, образуются в основном за счет скопления рыб, обладающих плавательным пузырем, хотя скопления крупных беспозвоночных также могут отражать звук. Днем звукорассеивающие слои находятся на глубинах больше 600 или даже 1000 м, по ночам эти слои часто перемещаются вверх; эти миграции подобны хорошо известным вертикальным миграциям зоопланктона (фиг. 71).



 

Возможно, будет полезно почитать: