Научная библиотека - рефераты - радиационные аварии, их виды, динамика развития, основные опасности. К радиационно опасным объектам относятся Сообщение на тему радиационно опасные объекты

    ХАРАКТЕРИСТИКА РАДИАЦИОННО ОПАСНЫХ ОБЪЕКТОВ.

    РАДИАЦИОННЫЕ АВАРИИ И ИХ КЛАССИФИКАЦИЯ.

    ОСНОВНЫЕ ОПАСНОСТИ ПРИ АВАРИЯХ НА РОО.

    ОСНОВНЫЕ ПОРАЖАЮЩИЕ ФАКТОРЫ АВАРИЙ НА РОО.

СПИСОК ЛИТЕРАТУРЫ.

1. ХАРАКТЕРИСТИКА РАДИАЦИОННО ОПАСНЫХ ОБЪЕКТОВ.

В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем ядерные технологии несут в себе опасность радиационного загрязнения окружающей среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) - научные, народнохозяйственные (промышленные) или оборонные объекты, при разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, а также заражение среды.

К РОО относятся:

    АЭС с различными видами реакторов(например, АЭС с водо-водяными реакторами, АЭС с графитовыми реакторами, АЭС с реакторами на быстрых нейтронах)

    Исследовательские ядерные реакторы

    Заводы по производству ядерного топлива

    Заводы по переработке и обогащению ядерного топлива

    Заводы по обработке ядерных отходов

    Урановые рудники

    Склады радиоактивной руды

    Хранилища радиоактивных отходов

    Морские суда и подводные лодки с ядерными двигательными установками

    Полигоны для испытаний ядерных боеприпасов

    Радиоционно опасная военная техника

К наиболее крупным АЭС относятся Балаковская,Белоярская, Билибинская, Курская, Смоленская, Ленинградская.

2. РАДИАЦИОННЫЕ АВАРИИ И ИХ КЛАССИФИКАЦИЯ .

В зависимости от вида радиационно-опасного объекта, масштабов и опасности последствий существует несколько различных классификаций радиационных аварий, происшествий и инцидентов. В таблице приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Согласно другой классификации радиационные аварии на РОО подразделяются на три типа:

    Локальная – нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

    Местная – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

    Общая – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

С точки зрения медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические.

Говоря о различных видах радиационных аварий, следует коротко остановиться на рассмотрении аварий с ядерным оружием и их последствиях. Аварии с ядерным оружием по степени их опасности можно разбить на четыре категории.

а) Случайный или несанкционированный взрыв ядерного боеприпаса, который не может привести к военному конфликту или ядерной войне.

б) Взрыв обычного ВВ, входящего в состав ядерного боеприпаса или горение ядерного боеприпаса.

в) Захват, кража или потеря ядерного боеприпаса либо его компонентов, включая сбрасывания с самолета.

а) Авария с носителями, на которых находятся ядерные боеприпасы.

б) Авария с носителями, на которых могут находиться ядерные боеприпасы.

3. ОСНОВНЫЕ ОПАСНОСТИ ПРИ АВАРИЯХ НА РОО.

Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.

Возможность аварии с разгоном реактора . При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.

    Радиоактивные выбросы в окружающую среду . Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации.. Очистные сооружения могут уменьшить их. Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.

    Необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.

    Радиоактивное облучение персонала . (Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.)

Начиная с 50-х годов, развитые страны продолжают наращивать свой производственный ядерный потенциал. АЭС все увереннее выступают в качестве важного источника энергии в странах Запада, США, Канады, Японии и др. Параллельно с этим ростом идет увеличение аварий на РОО. Так, с 1957 года по настоящее время в ряде западных стран и США было зафиксировано около 200 происшествий только на АЭС, в том числе более 30 крупных аварий многие из которых сопровождались выбросами радиоактивных продуктов распада в окружающую среду.

Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду радиоактивных веществ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества.

4. ОСНОВНЫЕ ПОРАЖАЮЩИЕ ФАКТОРЫ АВАРИЙ НА РОО.

Основным поражающим фактором при авариях на реакторах АЭС являются радиоактивные загрязнения местности, а источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ. Наряду с этим к поражающим фактором при авариях на РОО относятся ударная волна при взрыве,тепловое воздействие, ионизирующее излучение и световое излучение.

Рассмотрим образование поражающих факторов и их воздействие при аварии на РОО.

1. Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.

2. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.

3. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.

Специалисты выделяют следующие потенциальные последствия радиационных аварий:

1. немедленные смертельные случаи и травмы среди работников предприятия и населения;

2. латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;

3. материальный ущерб и радиоактивное загрязнение земли и экосистем;

4. ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.

К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.

Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз.

СПИСОК ЛИТЕРАТУРЫ.

1. Жабо В.В. Охрана окружающей среды на ТЭС и АЭС. М., Энергоатомиздат, 1992 г. -опасных объектов 3.2 Основные опасности при авариях на РОО 4. Радиационная безопасность... Максимов М.Т. Ожагов Г.О. Радиоактивные загрязнения и их измерения, 1989 г. 3. Глобальные выпадения...

  • Характеристика аварий на радиационно -опасных объектах

    Реферат >>

    Рекомендации по их учету и профилактике ЧС в Российской Федерации. Характеристика аварий на радиационно -опасных объектах . К радиационно -опасным объектам относятся...

  • Характеристика аварий на радиационно опасных объектах

    Тесты >> Безопасность жизнедеятельности

    1. ознакомиться с характеристикой аварий на радиационно -опасных объектах ; 2. выяснить какие предприятия относятся к радиационно -опасным объектам производства; 3. ... биосфере живые организмы и среда их обитания органически связаны и взаимодействуют друг...

  • Безопасность и защита населения при авариях на радиационно -опасных объектах

    Курсовая работа >> Безопасность жизнедеятельности

    Коэффициент качества излучения. Для характеристики уровня гамма-излучения применяется... мероприятий радиационной защиты в структурных подразделениях объекта осуществляется их ... хотя и имеются радиационно -опасные объекты но большой опасности не представляют, ...

  • ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

    ГОСУДАРСТВЕННОЕ

    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

    ВОРОНЕЖСКИЙ ФИЛИАЛ

    Кафедра математики и естественно научных дисциплин

    Контрольная работа

    по дисциплине: "Безопасность жизнедеятельности"

    Тема: "Радиационные аварии, их виды, динамика развития, основные опасности"

    Воронеж 2008 г.



    1. Радиационно-опасные объекты (РОО)

    Под радиационно-опасными понимаются объекты, использующие в технологических процессах или имеющие на хранении радиоактивные вещества, которые в случае аварии вызывают опасные для здоровья людей и окружающей среды загрязнения.

    Радиационная авария - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

    Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

    К радиационно-опасным объектам относятся:

    атомные станции различного назначения;

    предприятия по регенерации отработанного топлива и

    временному хранению радиоактивных отходов;

    научно-исследовательские организации, имеющие

    исследовательские реакторы или ускорители частиц; морские

    суда с энергетическими установками;

    хранилища ядерных боеприпасов; полигоны, где проводятся

    испытания ядерных зарядов.

    Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

    Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем за одно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

    В Российской Федерации имеется 33 энергоблока на 10 АЭС, 113 исследовательских ядерных установок, 13 промышленных предприятий топливного цикла, а также около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

    Для обеспечения надежной работы АЭС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности. Например, на АЭС с водно-паровым энергетическим реактором имеется пять барьеров безопасности. Это независимые друг от друга препятствия на пути ионизирующих излучений от топлива до окружающей среды. В результате ослабления ионизирующих излучений барьерами безопасности облучение населения, проживающего вблизи от АЭС типа ВПЭР, при ее безаварийной работе не превышает 0,2 мбэра в год.

    В соответствии с вышеизложенным Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99) на основании следующих нормативных документов: Федеральный закон "О радиационной безопасности населения" № 3-ФЗ от 09.01.96 г.; Федеральный закон "О санитарно-эпидемиологическом благополучии населения" № 52-ФЗ от 30.03.99 г.; Федеральный закон об использовании атомной энергии" № 170-ФЗ от 21.11.95г.; Закон РСФСР "Об охране окружающей природной среды" № 2060-1 от 19.12.91 г.; Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасности источников излучений, принятые совместно: Продовольственной и сельскохозяйственной организацией Объединенных Нации; Международным агентством по атомной энергии; Международной организацией труда; Агентством по ядерной энергии организации экономического сотрудничества и развития; Панамериканской организацией здравоохранения и Всемирной организацией здравоохранения (серия безопасности № 115), 1996 г.; Общие требования к построению, изложению и оформлению санитарно-гигиенических и эпидемиологических нормативных и методических документов. Руководство Р 1.1.004-94. Издание официальное. М. Госкомсанэпиднадзор России. 1994 г.

    За всю историю атомной энергетики (с 1954 г.) во всем мире было зарегистрировано более 300 аварийных ситуаций (за исключением СССР). В СССР, кроме аварии на ЧАЭС, другие аварии были неизвестны. Наиболее крупные выбросы РВ приводятся в таблице:

    Таблица № 1. Выбросы радиоактивных веществ, представляющие угрозу для населения

    Год, место

    Активность, МКи

    Последствия

    1957,Южный Урал

    Взрыв хранилища

    с высокоактивными отходами

    Загрязнено 235 тыс. км. кв. территории

    1957,Англия,

    Уиндскейл

    Сгорание графита во время отжига и повреждения твэлов

    РА облако распро-странилось на север до Норвегии и на запад до Вены


    Произведено 1820 ядерных взрывов; из них 483 в атмосфере

    Загрязнение атмосферы и по следу облака

    Авария спутника с ЯЭУ

    70% активности выпало в Южном полушарии

    1966,Испания

    Разброс ядерного топлива двух водородных бомб

    Точные сведения отсутствуют

    Срыв предохранительной мембраны первого контура тепло-носителя

    Выброс 22,7 тыс. тонн загрязненной воды, 10% РА веществ выпало в атмосферу

    Чернобыль

    Взрыв и пожар четвертого блока

    Несоизмеримы со всеми предыдущими

    2. Основные опасности при авариях на РОО

    В настоящее время практически любая отрасль хозяйства и науки использует радиоактивные вещества и источники ионизирующих излучений. Высокими темпами развивается ядерная энергетика.

    Ядерные материалы приходится возить, хранить, перерабатывать. Это создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

    В результате аварий могут возникнуть обширные зоны радиоактивного загрязнения местности и происходить облучение персонала ядерно - и радиационно-опасных объектов (РОО) и населения, что характеризует создавшуюся ситуацию как чрезвычайную. Степень опасности и масштабы этой ЧС будут определяться количеством и активностью выброшенных радиоактивных веществ, а также распад ионизирующих излучений.

    Радиационные аварии подразделяются на:

    · локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;

    · местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;

    · общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

    К типовым радиационно-опасным объектам следует отнести: атомные станции, предприятия по изготовлению ядерного топлива, по переработке отработанного топлива и захоронению радиоактивных отходов, научно-исследовательские и проектные организации, имеющие ядерные реакторы, ядерные энергетические установки на транспорте.

    Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.

    Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:

    · по типовым нарушениям нормальной эксплуатации;

    · по характеру последствий для персонала, населения и окружения среды.

    При анализе аварий используют цепочку "исходное событие-пути протекания-последствия".

    Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

    Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

    Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

    Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

    Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

    Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.

    Основными поражающими факторами радиационных аварий являются:

    · воздействие внешнего облучения (гамма - и рентгеновского; бета - и гамма-излучения; гамма - нейтронного излучения и др.);

    · внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бета-излучение);

    · сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;

    · комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).

    После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.

    Внутренне облучение развивается в результате поступления радионуклидов в организм с продуктами питания и водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливается щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.

    Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.

    Характер распределения радиоактивных веществ в организме:

    · накопление в скелете (кальций, стронций, радий, плутоний);

    · концентрируются в печени (церий, лантан, плутоний и др.);

    · равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);

    · радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.

    Основными параметрами, регламентирующими ионизирующее излучение, является экспозиционная, поглощенная и эквивалентная дозы.

    Экспозиционная доза - основана на ионизирующем действия излучения, это - количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см2 воздуха образуется 2,08 · 109 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) · 1Кл/кг=3876 Р.

    радиационная авария облучение дозиметрический

    Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ - 1 Грей (Гр).1 Гр=100 рад.

    Эквивалентная доза (ЭД) - единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв).1 Зв равен 100 бэр.

    Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах - до 1000 мбэр в год.

    В современных условиях человек сталкивается с превышением этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело, которая при длительном воздействии не вызывает у человека нарушения общего состояния, а также функций кроветворения и воспроизводства (таблица №2)

    Таблица № 2. Значение предельно допустимых концентраций некоторых радиоактивных веществ и предельно допустимых доз облучения людей



    Международная комиссия по радиационной защите (МКРЗ) рекомендовала в качестве предельно допустимой дозы (ПДД) разового аварийного облучения 25 бэр и профессионального хронического облучения-до 5 бэр в год и установила в 10 раз меньшую дозу для ограниченных групп населения.

    Для оценки отдаленных последствий действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций, не превышает 100 бэр на поколение. Генетически значимые дозы для населения находятся в пределах 7-55 мбэр/год.

    При общем внешнем облучении человека дозой в 150-400 рад развивается лучевая болезнь легкой и средней степени тяжести; при дозе 400-600 рад - тяжелая лучевая болезнь; облучение в дозе свыше 600 рад является абсолютно смертельным, если не используются меры профилактики и терапии.

    При облучении дозами 100-1000 рад в основе поражения лежит так называемый костномозговой механизм развития лучевой болезни. При общем или локальном облучении живота в дозах 1000-5000 рад - кишечный механизм развития лучевой болезни с превалированием токсемии

    При остром облучении в дозах более 5000 рад развивается молниеносная форма лучевой болезни. Возможна смерть "под лучом" при облучении в дозах более 20 000 рад. При попадании в организм радионуклидов, происходит инкорпорирование радиоактивных веществ. Опасность инкорпорации определяется особенностями метаболизма, удельной активностью, путями поступления радионуклидов в организм. Наиболее опасны радионуклиды, имеющие большой период полураспада и плохо выводящиеся из организма, на пример радий-266, плутоний-239. На поражающий эффект влияет место депонирования радионуклидов: стронций-89 и стронций-90 - кости; цезий-137 - мышцы. Места депонирования наиболее опасных радионуклидов представлены в таблице №2.

    Таблица № 3. Места накопления радионуклидов в организме человека

    Органы (ткани) человека

    Радионуклиды

    Криптон-85; плутон-238,239; радон-222; уран-233; ксенон-133,135

    Щитовидная железа

    Йод-129,131; технеций-99

    Цезий-137; кобальт-58,60; нептуний-239; плутоний-238,239,241

    Селезенка

    Полоний-210

    Цезий-134,137; рутений-106

    Барий-140; цезий-134,137; кобальт-58,60; йод-131; криптон-85; плутоний-239; калий-40,42; рутений-106; иттрий-90; цинк-65

    Барий-140; углерод-14; европий-154,155; фосфор-32; плутоний-238,239,241; прометий-147; радий-226; стронций-89,90; торий-234; уран-233; иттрий-90; цинк-65

    Цезий-134,137; европий-154,155; калий-40,42


    При авариях на ядерно-опасных объектах суммарную дозу облучения населения можно условно представить следующим образом:


    Д = Д внешн (ом) +Д внешн (к) +Д внутр (ингал) +Д внутр (пища, вода),


    Где Д внешн (ом) - доза внешнего облучения соответственно от радиоактивного облака и загрязненной местности;

    Д внешн (к) - доза внешнего облучения от радиоактивной пыли, попавшей на кожные покровы человека;

    Д внутр (ингал) - доза внутреннего облучения, полученная через органы дыхания (йод-131);

    Д внутр (пища, вода) - доза внутреннего облучения, полученная с пищей и водой, загрязненными радионуклидами долгоживущих элементов (цезия, стронция, плутония)

    3. Приборы радиационной разведки и дозиметрического контроля

    Приборы, предназначенные для обнаружения и измерения радиоактивных излучений, называются дозиметрическими. Их основными элементами являются: воспринимающее устройство, усилитель ионизационного тока, измерительный прибор, преобразователь напряжения, источник тока.

    Дозиметрические приборы классифицируются тремя группами:

    · 1 группа - рентгенометры-радиометры. Ими определяют уровни радиации на местности и зараженность различных объектов и поверхностей. К ним относится измеритель мощности дозы ДП-5В (А, Б) - базовая модель. На смену этому приходит ИМД-5. Для подвижных средств создан бортовой рентгенметр ДП-3Б. Взамен ему поступают измерители мощности дозы ИМД-21, ИМД-22. Это основные приборы радиационной разведки.

    · 2 группа - дозиметры для определения индивидуальных доз облучения: дозиметр ДП-70МП, комплект индивидуальных измерителей доз ИД-11.

    · 3 группа - бытовые дозиметрические приборы. Они дают возможность ориентироваться в радиационной обстановке на местности, иметь представление о зараженности различных предметов, воды и продуктов питания.

    1 группа: рентгенметры-радиометры

    Измеритель мощности дозы ДП-5В предназначен для измерения уровней γ-радиации и радиоактивной зараженности (загрязненности) различных объектов (предметов) по γ - излучению. Мощность экспозиционной дозы γ - излучения определяется в миллирентгенах или рентгенах в час (мР/ч, Р/ч). Этим прибором можно обнаружить, кроме того, и β-зараженность. Диапазон измерения по γ - излучению - от 0,05 мР/ч до 200 Р/ч. Показания снимаются по отклонению стрелки прибора. Кроме того, прибор имеет и звуковую индикацию, которая прослушивается с помощью головных телефонов. При радиоактивном заражении стрелка отклоняется, а в телефонах раздаются щелчки, частота которых возрастает с увеличением мощности γ - излучений. Питание прибора осуществляется от двух элементов типа 1,6 ПМЦ. Масса прибора составляет 3,2 килограмма.

    Измеритель мощности дозы ИМД-5 выполняет те же функции, что и ДП-5В. По внешнему виду и порядку работы они, практически, ничем не отличаются. Питание прибора осуществляется от двух элементов А-343, обеспечивающих непрерывную его работу в течение 100 часов.

    Бортовой рентгенметр ДП-3Б предназначен для измерения уровней γ - радиации на местности. Прибор устанавливается на транспорте. Диапазон измерений - от 0,1 до 500 Р/ч. Питание производится от бортовой сети постоянного тока напряжением 12 или 26В. Масса - около 4,4 килограммов. Уровни заряжения устанавливаются по отклонению стрелки микроамперметра и лампы световой индикации, которая по мере увеличения гамма-излучения вспыхивает все чаще. Прибором определяются уровни радиации не выходя из машины. Блок выставляется наружу с расположенным в нем детектором ионизирующих излучений. Если измерения проводятся из автомобиля, то показания прибора увеличивают в 2 раза, если из локомотива, дрезины - в 3 раза.

    Измерителем мощности дозы ИМД-22 производят измерения поглощенной дозы не только по γ-, но и по нейтронному излучению. Его также можно использовать как на подвижных средствах, так и на стационарных объектах. Питание этого прибора может быть как от бортовой сети автомобиля, так и от бытовой сети (220В).

    2 группа: дозиметры

    Дозиметр ДП-70МП используется для измерения дозы γ - и нейтронного облучения в пределах от 50 до 800 Р. Он представляет собой стеклянную ампулу с бесцветным раствором, помещенную в футляр. Футляр закрывается крышкой, на внутренней стороне которой находится цветной эталон, соответствующий окраске раствора при дозе облучения 100 Р. По мере облучения раствор меняет свою окраску. Масса дозиметра - 46 граммов, носится в кармане одежды.

    Для определения дозы облучения ампулу вынимают из футляра и вставляют в корпус колориметра. Вращая диск фильтрами, ищут совпадения окраски ампулы с цветом фильтра, на котором и написана доза облучения.

    Комплект индивидуальных измерителей дозы ИД-11 предназначен для индивидуального контроля облучения людей с целью первичной диагностики поражений.

    В комплект входит 500 индивидуальных измерителей доз ИД-11 и измерительное устройство. ИД-11 обеспечивает измерение поглощенной дозы γ - и смешанного γ-нейтронного излучения в диапазоне от 10 до 1500 Р (рад). Масса ИД-11 составляет 25 граммов, носится в кармане одежды.

    Для определения дозы, полученной человеком, ИД-11 вставляют в специальное гнездо измерительного устройства, и на табло высвечивается цифра, показывающая результат.

    3 группа: бытовые дозиметрические приборы

    "Белла" - индикатор внешнего гамма-излучения. С его помощью оценивается радиационная обстановка в бытовых условиях, определяется уровень мощности эквивалентной дозы гамма-излучения: грубая оценка - по звуковому сигналу, точная - по цифровому табло. Индикатор выполнен из ударопрочного полистирола. Питание - от батареи типа "Крона" (200 часов непрерывной работы). Масса - 250 граммов.

    РКСБ-104 - бета-гамма радиометр . Предназначен для индивидуального контроля населением радиационной обстановки. Им можно измерить мощность эквивалентной дозы гамма - излучения, плотность потока бета - излучения с загрязненных радионуклидами поверхностей, удельную активность бета - излучений радионуклидов в веществах (продуктах, кормах), а также обнаружить и оценить бета - и гамма - излучения с помощью пороговой звуковой сигнализации. Питание - от батареи "Крона" (100 часов непрерывной работы). Масса - 350 граммов.

    Мастер-1 - один из самых маленьких индивидуальных дозиметров. Масса - 80 граммов, носится в кармане одежды. Предназначен для оперативного контроля радиационной обстановки. Позволяет измерять мощность экспозиционной дозы в пределах от 10 до 999 мкР/ч. Питание - от элемента СЦ-32.

    "Берег" - индивидуальный индикатор радиационной мощности дозы. Предназначен для оценки радиационного фона в пределах от 10 до 120 мкР/Ч и более. Индикатор позволяет оценивать уровень радиоактивного загрязнения по гамма - излучению продуктов питания и кормов от 3700 Бк/кг (Бк/л) и выше в районах, как с естественным радиационным фоном, так и загрязненных долгоживущими нуклидами, а также в местах размещения РОО.

    Гамма - излучения регистрируются с помощью звуковой сигнализации и стрелочного прибора со шкалой, разбитой на три цветных сектора. Если стрелка находится в зеленом секторе шкалы (мощность дозы гамма - излучения от 0 до 60 мкР/ч), то это означает, что мощность в пределах фонового значения; если в желтом секторе - "Внимание" (мощность дозы от 60 до 120 мкР/Ч); в красном - "Опасно" (мощность дозы более 120 мкР/ч).

    Питание прибора - 4 аккумулятора ДО-06 или 2 источника МЛ-2325. При регистрации естественного фона одного комплекта источников питания хватает на 60 часов непрерывной работы. Масса - 250 граммов.

    СИМ-05 применяется для оценки радиационной обстановки в быту и на производстве. Фиксирует уровни мощности эквивалентной дозы гамма - излучения с помощью звуковых сигналов и цифрового табло. Порог сигнализации: 0,6; 1,2; 4 мкЗв. Питание - одна батарея "Крона" (500 часов непрерывной работы). Масса - 250 граммов.

    ИРД-02Б - дозиметр - радиометр . Предназначен для измерения мощности эквивалентной дозы гамма - излучения, оценки плотности потока бета - излучения от загрязненных поверхностей и загрязненности бета-, гамма - излучающими нуклидами проб воды, почвы, пищи, кормов.

    Прибор обеспечивает цифровые показания об уровнях оцениваемых величин, а также подает звуковые сигналы, частота следования которых пропорциональна интенсивности бета - гамма - излучения. Имеет два режима работы: первый - для обнаружения и измерения полей гамма - излучения и для измерения удельной активности радионуклидов по гамма - излучению в пробах; второй - для обнаружения и оценки степени загрязненности бета-, гамма - излучающими нуклидами различных поверхностей и проб. Питание - 6 батарей А-316 (не менее 80 часов непрерывной работы). Масса - 750 граммов.

    4. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии

    Деятельность людей на зараженной местности значительно затруднена из-за медленного спада радиоактивности. Мероприятия по ограничению облучения населения регламентируются "Нормами радиационной безопасности НРБ-99", установленными Министерством здравоохранения России в 1999 году, которые, в частности, сводятся к следующему:

    · В случае возникновения аварии должны быть приняты практические меры для восстановления контроля над источником излучения, сведения к минимуму доз облучения, количества облучаемых лиц, радиоактивного загрязнения окружающей среды, экономических и социальных потерь;

    · Необходимо соблюдать принцип оптимизации вмешательства, т.е. польза от защитных мероприятий должна превышать вред, наносимый ими;

    · Срочные меры защиты следует применять в случае, если доза предполагаемого облучения за короткий срок (двое суток) достигает уровня, при котором возможны клинически определяемые детерминированные эффекты;

    · При хроническом облучении в течение жизни защитные мероприятия становятся обязательными, если годовые поглощенные дозы превышают установленные пределы;

    · При планировании защитных мероприятий на случай радиационной аварии органами Госсанэпиднадзора устанавливаются уровни вмешательства (дозы и мощности доз облучения) применительно к конкретному радиационному объекту и условия его размещения с учетом вероятных типов аварии;

    · При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании прогноза радиационной обстановки устанавливается зона радиационной аварии и осуществляются соответствующие мероприятия по снижению уровней облучения населения;

    · На поздних стадиях развития аварий, повлекших за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально - экономических условий.

    По степени опасности зараженную местность на следе выброса и распространения радиоактивных веществ делят на следующие 5 зон:

    М - радиационной опасности - 14 мрад/ч;

    А - умеренного заражения - 140 мрад/ч;

    Б - сильного заражения - 1,4 рад/ч;

    В - опасного заражения - 4,2 рад/ч;

    Г - чрезвычайно опасного заражения - 14 рад/ч.

    Определение зон радиоактивного заражения необходимо для планирования действий работающих на объекте, населения, подразделений МЧС; для планирования мероприятий по защите контингентов людей; определения возможного количества пострадавших вследствие аварии.

    Для минимизации потерь в качестве предупредительных мер вокруг АЭС устанавливаются следующие зоны:

    санитарно - защитная - радиус 3 км;

    возможного опасного загрязнения - радиус 30 км;

    зона наблюдения - радиус 50 км;

    100 - километровая зона по регламенту проведения защитных мероприятий.

    Защита населения при возможных авариях на объектах ядерной энергетики, в том числе и на атомных станциях, обеспечивается проведением комплекса организационных, инженерно - технических и санитарно - гигиенических мероприятий, включающих вопросы проектирования, строительства и эксплуатации радиационно - опасных объектов.

    Меры обеспечения безопасности РОО организационного и технического характера проводятся по 3 уровням :

    Меры 1-го уровня направлены на предотвращение перерастания отказов оборудования и ошибок персонала в опасное происшествие или аварию.

    Меры 2-го уровня - обеспечение защиты от проектных аварий. Этот уровень обеспечивается системами безопасности:

    · защитными, предотвращающими или ограничивающими повреждение ядерного топлива, оболочек твэлов и первого контура;

    · локализующими, которые не допускают или ограничивают выход радиоактивных веществ в окружающую атмосферу;

    · управляющими, которые обеспечивают приведение в действие систем безопасности, контроль и управление ими в процессе выполнения заданных функций;

    · обеспечивающими, которые снабжают системы безопасности энергией, рабочей средой и создают условия для их функционирования.

    Меры 3-го уровня предусматривают защиту от запроектных аварий, развивающихся с наложением двух и более отказов в системе безопасности при наличии ошибок персонала. Эти меры реализуются на основе следующих принципов:

    · многоэшелонированной защиты, в соответствии с которой любая проектная авария не должна приводить к последующему нарушению систем локализации аварии;

    · своевременного и эффективного использования систем безопасности;

    · обеспечение квалифицированной эксплуатации установки;

    · снижения вероятности возникновения аварии за счет технологических мер безопасности, высокого качества проектирования и строительства РОО;

    · заблаговременной разработки аварийных планов защиты персонала, населения, окружающей среды при запроектных авариях и ликвидации их последствий.

    Защита персонала и населения состоит в заблаговременном зонировании территорий вокруг радиационно-опасных объектов. При этом устанавливаются следующие три зоны:

    экстренных мер защиты - это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза внутреннего облучения отдельных органов может превысить верхний предел, установленный для эвакуации;

    предупредительных мероприятий - это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза облучения внутренних органов может превысить верхний предел, установленный для укрытия и йодной профилактики;

    ограничений - это территория, на которой доза облучения всего тела или отдельных его органов за год может превысить нижний предел для потребления пищевых продуктов. Зона вводится по решению государственных органов.

    Основные мероприятия по защите от радиоактивного заражения:

    · ограничение пребывания населения на открытой местности;

    · профилактика переоблучения щитовидной железы (применение препаратов стабильного йода);

    · защита органов дыхания подручными и промышленными средствами индивидуальной защиты;

    · эвакуация населения.

    Для защиты персонала и населения в случае аварии на РОО предусматриваются следующие мероприятии:

    · создание автоматизированной системы контроля радиационной обстановки (АСКРО);

    · создание локальной системы оповещения персонала и населения в 30-километровой зоне;

    · строительство и готовность защитных сооружений в радиусе 30 километров вокруг РОО, а также возможность использования встроенных защитных сооружений и ПРУ;

    · определение перечня населенных пунктов и численности населения, подлежащего защите или эвакуации из зон возможного радиоактивного заражения;

    · создание запасов медикаментов, средств индивидуальной защиты промышленного изготовления и других средств для защиты населения и обеспечения его жизнедеятельности;

    · обучение и подготовка персонала и населения к действиям во время и после аварии;

    · создание на РОО специальных формирований для ликвидации аварий и проведения спасательных работ;

    · прогнозирование радиационной обстановки;

    · организация радиационной разведки;

    · проведение тренировок и учений на РОО и прилегающей территории.

    Прогнозирование радиационной обстановки в интересах выработки предупредительных мер защиты населения в удаленных от РОО районах осуществляется в соответствии с возможными фазами развития запроектной аварии.

    Ранней фазой является промежуток времени, когда критическими путями радиационного воздействия продуктов аварийного выброса на население будет внешнее облучение от аэрозольно-газового облака и радиоактивных выпадений, а также ингаляционное поступление радионуклидов в организм человека. Ранняя фаза охватывает время от начала аварии до окончания формирования радиоактивного следа на местности.

    В средней фазе критическими путями воздействия будут внешнее облучение от выпавших на местности радиоактивных веществ и поступление радионуклидов в организм человека с пищевыми продуктами местного производства. Средняя фаза продолжается от момента окончания формирования радиоактивного следа до завершения применения всех мер защиты населения.

    В поздней фазе критическими путями воздействия будут внешнее облучение от радиоактивного следа и перроральное поступление радионуклидов по пищевой цепочке. Эта фаза длится до прекращения необходимости в выполнении защитных мер.

    Основными мерами защиты населения на ранней фазе развития аварии являются укрытие в защитных сооружениях и герметизированных помещениях, эвакуация, йодная профилактика и применение средств индивидуальной защиты. Также могут осуществляться и такие меры защиты, как медицинская помощь населению и блокирование загрязненной территории с регулированием входа и выхода из нее.

    При укрытии населения в защитных сооружениях учитывается большая проникающая способность радиоактивных газов и аэрозолей радиоактивного облака, снижающая эффективность работы фильтров сооружений. Поэтому, к моменту подхода радиоактивного облака убежища приводятся в режим полной изоляции, а ПРУ герметизируются, для чего закрываются заслонки приточных и вытяжных коробов. Кроме того, в ПРУ и герметизированных помещениях укрываемые надевают средства защиты. Такой режим продолжается 2-3 часа. Если выбросы продолжаются, режим сохраняется до изменения метеорологических условий. Для вентиляции защитных сооружений может осуществляться кратковременное включение ФВА (открытие заслонок вентиляционных коробов в ПРУ). На время вентиляции укрываемые используют и средства защиты кожи.

    Эвакуация населения происходит в два этапа. На первом этапе население транспортом зоны доставляется до границы зоны загрязнения. На втором - пересаживается на незагрязненный транспорт и доставляется в места размещения. На границе зоны радиоактивного загрязнения организуется промежуточный пункт эвакуации, на котором эвакуируемые проходят регистрацию, дозиметрический контроль, санитарную обработку.

    На средней фазе развития аварии проводится обследование загрязненных объектов, контроль радиоактивного загрязнения сельскохозяйственных продуктов, принимаются необходимые меры защиты населения от всех видов радиационной опасности.

    На поздней фазе развития аварии на основании контроля радиационного загрязнения окружающей среды уточняются ранее намеченные мероприятия, принимаются меры защиты, обеспечивающие исключение переоблучения населения, оказавшегося на местности, загрязненной радиоактивными веществами вследствие их миграции, а также населения, возвращающегося из эвакуации.


    5. Алгоритм действий при поступлении сообщения о радиационной опасности

    Припоступлении сигнала о радиационной опасности следует немедленно надеть противогаз, при его отсутствии - респиратор, ватно-марлевую повязку и следовать в защитное сооружение.

    Если защитное сооружение расположено далеко и средств защиты органов дыхания не имеется, нужно остаться дома. Необходимо следить за распоряжениями органов ГО и ЧС, поступающими посредством радио и телевидения. Следует закрыть окна, двери, вентиляционные люки, отдушины, заклеить щели, т.е. провести герметизацию квартиры.

    Необходимо провести экстренную йодную профилактику, которая заключается в приеме препаратов стабильного йода, йодистого калия или водно-спиртового раствора йода. Если в наличии имеются противорадиационные препараты (цистеин, цистомин, цистофос и др.), то следует прибегнуть к их приему. Принимать их надо до начала радиоактивного заражения. Эффективность защитного действия препарата, принятого после облучения, гораздо ниже. Следует помнить о возможной эвакуации: подготовить документы, деньги, предметы первой необходимости, лекарства, минимум белья и одежды, консервные продукты.

    Собранные вещи упаковать в полиэтиленовые мешки и пакеты и уложить в помещении, наиболее защищенном от загрязнения (удаленном от окон и дверей).

    В случае передвижения по открытой местности следует использовать подручные средства защиты:

    · органов дыхания - прикрыть рот и нос смоченной водой марлевой повязкой (носовым платком, полотенцем, частью одежды);

    · кожи и волосяного покрова - прикрыть любыми предметами одежды, головными уборами, косынками, накидками и т.д. Рекомендуется надеть резиновые сапоги.

    В настоящее время практически в любой отрасли промышленности и науки используются радиоактивные вещества и источники ионизирующих излучений. В связи с этим вопросы радиационной защиты населения и предотвращения чрезвычайных ситуаций на РОО играют важную роль для сохранения хозяйственных объектов, жизни и здоровья населения страны.



    Список использованной литературы

    1. Хван Т.А., Хван П.А. Безопасность жизнедеятельности. Ростов н /Д: "Феникс", 2003 г.

    2. Арустамов Э.А. Безопасность жизнедеятельности. М.: "Торговая корпорация "Дашков и К", 2005 г.

    3. Сергеев В.С. Безопасность жизнедеятельности. Москва, 2004 г.

    ТЕХНОГЕННЫЕ ОПАСНОСТИ

    Техногенные опасности - это опасности, связанные с техническими объектами. Быстрая смена технологий производства, его высокие скорости нередко становят­ся причинами техногенных катастроф, в том числе крупных.

    Техногенные катастрофы проявляются в форме аварий технических систем, пожаров, взрывов, заражения атмосферы и местности аварийными химически опасными веществами (АХОВ), радиоактивными веществами (РВ) и других труд­но предсказуемых событий. Люди, попавшие в зону техногенной катастрофы, рискуют получить заболевания или травмы различной степени тяжести.

    Наиболее опасны аварии на предприятиях, производящих, использующих или хранящих радиоактивные и ядовитые вещества, взрыво- и огнеопасные материалы. Аварии на подобных предприятиях (заводы и комбинаты химической, нефтехими­ческой, нефтеперерабатывающей и ядерной промышленности) могут сопровож­даться выбросом в атмосферу ядовитых веществ. Попадая в атмосферу, летучие ядовитые вещества в газообразном или парообразном состоянии образуют зоны химического заражения, размеры которых могут достигать нескольких десятков, а иногда и сотен километров.

    РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ

    Радиационно-опасные объекты (РОО) - это те объекты, на которых хранятся, перерабатываются, используются или транспортируются радиоактивные вещест­ва. Особое место среди них занимают атомные электростанции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (ACT), атомные станции промышленного теплоснабжения (АСПТ).

    Кроме опасности, которую создают аварии на АЭС, существуют и другие Реальные источники радиоактивного заражения. Они непосредственно связаны с добычей урана, его обогащением, переработкой, транспортировкой, хранени­ем и захоронением отходов. Опасными являются многочисленные отрасли науки и промышленности, использующие изотопы: изотопная диагностика, рентгенов­ское обследование больных, рентгеновская оценка качества технических изде­лий. Радиоактивными являются и некоторые строительные материалы.

    Большую угрозу для здоровья и жизни человека представляют аварии на за водах ядерной промышленности, атомных энергетических установках, в хранили­щах ядерных материалов и отходов.

    Радиационная авария - это авария на РОО, при которой произошел выброс радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, вызвавший облучение населения и загрязнение окружающей среды. Радиационная авария может произойти по не­скольким причинам: ошибки при проектировании, износ оборудования, ошибки оператора и нарушения эксплуатации.

    В результате аварий на РОО в атмосферу выбрасываются РВ, распростра­няющиеся под воздействием ветра на значительные расстояния. Выпадая в виде осадков, РВ образуют зону радиоактивного загрязнения. При определенных кон­центрациях загрязнения местности проживание на ней становится опасным для жизни.

    Одна из особенностей радиоактивного загрязнения заключается в том, что его невозможно обнаружить без специальных дозиметрических приборов, т. к. радиация не обладает ни цветом, ни запахом, ни вкусом.

    Радиоактивные излучения способны проникать через различные толщи мате­риала и вызывать нарушения всех жизненно важных процессов в организме че­ловека (кроветворения, работы нервной системы, желудочно-кишечного тракта). Человек в момент воздействия радиации не получает телесных повреждений и не испытывает болевых ощущений, однако в результате облучения у пораженного позже может развиться лучевая болезнь.

    Основные поражающие факторы радиационной аварии:

    · воздействие внешнего облучения (гамма-, бета- и рентгеновское излучение);

    · внутреннее облучение от попавших в организм человека радионуклидов (аль­фа- и бета-излучение);

    · механические и термические травмы, химические ожоги, интоксикация.

    После аварии наибольшую опасность представляет внешнее облучение, которое проникает в организм через покровы кожи и органы дыхания. Через 2-3 месяца после аварии большую опасность представляет внутреннее облучение, которое проникает в организм через желудочно-кишечный тракт с продуктами питания и водой. Внутреннее облучение наиболее опасно для человека, т. к. внутренние органы защитить невозможно.

    Ионизирующее облучение:

    а-(алъфа)-излучение - это поток частиц, являющихся ядрами атома гелия. Это излучение распространяется в средах прямолинейно со скоростью 20 000 км/с. Альфа-частицы обладают большой массой, быстро теряют свою энергию и по­этому имеют незначительный пробег: в воздухе - до 11 см, биологических тка­нях - 30-130 мкм, алюминии - 16-67 мкм. Несмотря на то, что альфа-частицы обладают наименьшей проникающей способностью, они имеют наибольшую по­ражающую способность;

    р-(бета)-излучение - это поток электронов, обладающих большей проникаю­щей способностью и меньшей поражающей способностью, чем альфа-излучение. Они возникают в ядрах атомов при радиоактивном распаде и сразу же излучаются оттуда со скоростью, близкой к скорости света. Проникающая способность бета-излучения в воздухе составляет несколько метров, в биологических тканях - не­сколько сантиметров, в алюминии - несколько миллиметров;

    рентгеновское излучение - электромагнитное излучение высокой частоты и короткой длиной волны, возникает при бомбардировке веществ потоком элект­ронов. Обладает большой проникающей способностью;

    у-(гамма)-излучение - это поток квантовой энергии, распространяющейся со скоростью света. Обладает большей проникающей способностью и меньшей по­ражающей способностью, чем рентгеновское излучение.

    Характер распределения радиоактивных веществ в организме:

    · в скелете накапливается радиоактивный кальций, стронций, радий;

    · в печени концентрируется плутоний, лантан;

    · в мышцах накапливается цезий;

    · в легких - радон;

    · равномерно распределяются по всему организму полоний, тритий;

    · в щитовидной железе накапливается радиоактивный йод.

    В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории.

    В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все.

      Запомните!
      Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.
      Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды.
      Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

    Это должен знать каждый

    К радиационно опасным объектам относятся:

    • предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов);
    • атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС);
    • объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями);
    • ядерные боеприпасы и склады для их хранения.

    Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение).

    Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

    Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор».

    Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора.

    Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах.

    Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

      Статистика

      В Российской Федерации семь из десяти действующих АЭС - Ленинградская, Курская, Смоленская, Калининская, Нововоронежская, Ба-лаковская (Саратовская область), Ростовская - расположены в густонаселенной европейской части страны. В 30-километровых зонах АЭС проживает более 4 млн человек.
      За время развития ядерной энергетики (в период с 1957 г. по настоящее время) в мире произошли четыре крупные аварии на АЭС: в 1957 г. в Великобритании (Виндскейл), в 1979 г. - в США (Три-Майл-Айленд), в 1986 г. в СССР (Чернобыль) и в 2011 г. в Японии (Фукусима). Двум последним авариям была присвоена высшая, 7-я категория.

    Международное агентство по атомной энергетике (МАГАТЭ) разработало специальную шкалу классификации тяжести аварий на АЭС. Шкала имеет 7 категорий тяжести последствий аварий и происшествий на АЭС и предназначена для оценки серьезности происшедшего, быстрого оповещения и выбора адекватных мер безопасности.



    Исторические факты

    Коротко приведем анализ последствий аварии на Чернобыльской АЭС.

    26 апреля 1986 г. на 4-м энергоблоке Чернобыльской АЭС произошел взрыв реактора с разрушением его активной зоны и интенсивным выбросом в окружающую среду радиоактивных веществ в течение 10 суток. В результате радиоактивному загрязнению подверглись территории России, Белоруссии и Украины, а также территории стран Балтии и ряда других европейских государств.

    В результате взрыва на станции погибли 2 человека, 145 человек из работников станции, пожарных и других ликвидаторов последствий получили дозу облучения от 100 до 1600 бэр. 27 человек из них вскоре скончались.

    Выброшенные из реактора радионуклиды создали вблизи него и в пределах 30-километровой зоны большие уровни радиации, жители из этих районов были эвакуированы. Позже к этой зоне эвакуации присоединили местности, где суммарная доза получения населением к первому году после аварии могла бы превысить 10 бэр. В целом до конца 1986 г. из 188 населенных пунктов, включая г. Припять (город чернобыльских энергетиков), было отселено 116 тыс. человек.

    Необходимо отметить, что наибольшую угрозу здоровью неэвакуированного населения представляло загрязнение воздуха и почвы радиоактивным йодом. Попав внутрь, он активно захватывался из крови щитовидной железой, приводя к местному облучению в дозах более 300 бэр.

    Из-за нерешительности и некомпетентности руководителей местных органов власти решение на проведение йодной профилактики было принято с большим опозданием - 6 мая 1986 г. В результате большие дозы облучения (более 300 бэр) щитовидной железы получили тысячи людей.

    В основе биологического воздействия ионизирующего излучения на организм человека лежит степень ионизации атомов и молекул организма выше допустимой нормы. При допустимой норме ионизации организм восстанавливает нарушения, а превышение нормы приводит к развитию лучевой болезни.

      Внимание!
      Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы.

    В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения.

    Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения.

    Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль).

    Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны.

    Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения.

    Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.

    В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв - 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.)

    Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС.

    Вопросы

    1. Какие объекты относятся к радиационно опасным объектам?
    2. Какое событие понимается как радиационная авария?
    3. Какие вещества относятся к радиоактивным?
    4. Что такое ионизирующее излучение и каково его влияние на организм человека?
    5. Какими величинами определяется степень воздействия ионизирующего излучения на организм человека?

    Задание

    Перечислите причины появления лучевой болезни и существующие степени ее проявления.

    1 Введение.

    Экологическая катастрофа... Данное словосочетание страшное даже (или особенно) для обывательского сознания. И всеже специалисты оказываются или наиболее чувствительными, или наиболее толстокожими, оперирующими цифрами о катастрофах и катаклизмах с таким спокойствием в языковых средствах, что начинаешь и их подозревать в антиэкологическом сознании. Известно, что экологические проблемы возникают из-за антиэкологического характера общества,а в конечном счете - всего человечества. Вспомним Ф.Ницше: “Безумие единиц - исключение, а безумие групп, партий, народов, времен - правила”.И я очень слабо верю в излечение времен и народов именно в этом плане экологического сознания. Как еще слабее - в совесть и моральные тормоза. Остается одно - закон. И здесь я, возможно,выскажу крамольную мысль: нужен закон, провозглашающий природу,окружающую среду, высшим по отношению к человеку субъектом права. Только при такой постановке вопроса можно говорить о спасении человечества, спасая природу. Только при таком подходе к решению экологических проблем можно надеяться, что безумие времен и народов станет исключением.

    2 Радиационная опасность.

    Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами: радио- активные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении, или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма- такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвер- гается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективно эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения. С начала прошлого века человек ”покорил атом” и к естественным источникам радиации добавились источники созданные самими людьми. Опасность получения радиоактивного облучения сильно возросла. Проблема радиационной обстановки очень актуальна на сегодняшний день: Много АЭС: Белоярская, Ленинградская, Балаковская, Минская, Брестская, Обнинская и т.д. Ряд небольших аварий, большинство из которых очень тчательно скрывались (например, об аварии на Чернобыльской АЭС было упомянуто в газете “Правда” уже после избрания Генеральным секретарём ЦК КПСС Ю.В. Андропова). Сентябрь 1957 года. Авария на реакторе близ Челябинска. Радиацией была заражена обширная территория. Население эвакуировали, а весь скот уничтожили. 7 января 1974 года. Взрыв на первом блоке Ленинградской АЭС. Жертв не было. 1977 год. Расплавление половины топливных сборок активной зоны на втором блоке Белоярской АЭС. Ремонт с переоблучением персонала длился около года. Октябрь 1982 года. Взрыв генера- тора на первом блоке Армянской АЭС. Машинный зал сгорел. 27 июня 1985 года. Авария на первом блоке Балаковской АЭС. Погибли 14 человек. Авария произошла из-зa ошибочных действий мaлоопытного оперативного персонала. Много атомных кораблей и подводных лодок. Проблема с выбросами радиоактивных отходов. Очень много вредных радиоактивных веществ выбрасываются в моря, реки и т.д. После аварий на АЭС иногда даже нет специальных контейнеров, в которых можно хранить радиоактивные вещества (в Чернобыле такие контейнеры строили уже после аварии, подвергая тем самым персонал пере- облучению). Крупные аварии: Чернобыльская АЭС, Уральская АЭС. Естественно, что эти аварии в большей мере подрывают веру многих людей в безопасность использования АЭС. Очень большой процент погибших и навсегда искалеченных людей. Но не одни АЭС являются источниками повышенной радиоактивной опасности. О них и пойдет далее речь.

    3 Радиационно опасные объекты.

    За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных. Как правило, для техногенных источников радиации упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивным и осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками. Радиационно опасные объекты- предприятия, при аварии на которых или при разрушении которых могут произойти массовые радиационные поражения людей, животных, растений и радиоактивное заражение окружающей природной среды. К ним относятся:

      Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;

      Научно – исследовательские и проектные институты, имеющие ядерные установки;

      Транспортные ядерные энергетические установки;

      Военные объекты;

    Во избежание аварий на радиационно опасных объектах необходимо соблюдать технику безопасности. Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

    1. Непревышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

    2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

    3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

    3.1 Ядерное оружие.

    Ядерные взрывы. За последние 40 лет каждый из нас подвергался облучению от радиоактивных осадков, которые образовались в результате ядерных взрывов. Как известно после взрыва атомной бомбы в атмосферу попадает огромное колличество радиации, которая в последствии выпадает на различных территориях в виде осадков. Но речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и Нагасаки в 1945 году, а об осадках, связанных с испытанием ядерного оружия в атмосфере. Максимум этих испытаний приходится на два периода: первый на 1954 1958 годы, когда взрывы проводили Великобритания, США и СССР, и второй, более значительный, на 1961 1962 годы, когда их проводили в основном Соединенные Штаты и Советский Союз. Во время первого периода большую часть испытаний провели США, во время второго СССР. Эти страны в 1963 году подписали договор об ограничении испытаний ядерного оружия, обязывающий не испытывать его в атмосфере, под водой и в космосе. С тех пор лишь Франция и Китай провели серию ядерных взрывов в атмосфере, причем мощность взрывов была существенно меньше, а сами испытания проводились реже (последнее из них в 1980 году). Подземные испытания проводятся до сих пор, но они обычно не сопровождаются образованием радиоактивных осадков. Часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в тропосфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе в среднем около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбрасывается в стратосферу (следующий слой атмосферы, лежащий на высоте 10- 50 км), где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара. Радиоактивные осадки содержат несколько сотен различных радионуклидов, однако большинство из них имеет ничтожную концентрацию или быстро распадается; основной вклад в облучение человека дает лишь небольшое число радионуклидов. Вклад в ожидаемую коллективно эффективную эквивалентную дозу облучения населения от ядерных взрывов, превышающий 1%, дают только четыре радионуклида. Это углерод-14, цезий-137, цирконий-95 и стронций-90. Дозы облучения за счет этих и других радионуклидов различаются в разные периоды времени после взрыва, поскольку они распадаются с различной скоростью. Так, цирконий-95, период полураспада которого составляет 64 суток, уже не является источником облучения. Цезий-137 и стронций-90 имеют периоды полураспада 30 лет, поэтому они давали вклад в облучение приблизительно до конца 20 века. И только углерод-14, у которого период полураспада равен 5730 годам, будет оставаться источником радиоактивного излучения (хотя и с низкой мощностью дозы) даже в отдаленном будущем: к 2000 году он потеряет лишь 7% своей активности. Годовые дозы облучения четко коррелируют с испытаниями ядерного оружия в атмосфере: их максимум приходится на те же периоды. В 196З году коллективная среднегодовая доза, связанная с ядерными испытаниями, составила около 7% дозы облучения от естественных источников; в 1966 году она уменьшилась до 2%, а в начале 80-х до 1%. Если испытания в атмосфере больше проводиться не будут, то годовые дозы облучения будут становиться все меньше и меньше. Все приведенные цифры, конечно, являются средними. На Северное полушарие, где проводилось большинство испытаний, выпала и большая часть радиоактивных осадков. Пастухи на Крайнем Севере получают дозы облучения от цезия-137, в 100 1000 раз превышающие среднюю индивидуальнуюдозу для остальной части населения (впрочем, они получают большие дозы и от естественных источников цезий накапливается в ягеле и по цепи питания попадает в организм человека). К несчастью, те люди, которые находились недалеко от испытательных полигонов, получили в результате значительные дозы; речь идет о части населения Маршалловых островов и команде японского рыболовного судна, случайно проходившего неподалеку от места взрыва. Суммарная ожидаемая коллективно эффективная эквивалентная доза от всех ядерных взрывов в атмосфере, произведенных к настоящему времени, составляет 30000000 чел-Зв. К 1980 году человечество получило лишь 12% этой дозы, остальную часть оно будет получать еще миллионы лет. Возьмем для примера широко известный всем Семипалатинский полигон на котором в СССР проводились испытания ядерного оружия к северо-востоку от Семипалатинского полигона находится Алтайский край. Географическое положение Алтайского края и региональные проявления законо­мерностей глобальной циркуляции атмосферы обусловили близкую к 50% вероятность прохождения радиоактивных продуктов от атмос­ферных ядерных взрывов на Семипалатинском полигоне над террито­рией Алтайского края. Это привело к созданию в мышлении жителей Алтайского края критического и, возможно, не обоснованного отрицательного отношения к использованию атомной энергии в каких бы то ни было целях. В то же время исследования влияния ядерных испытаний на Семипалатинском полигоне на здоровье населения Алтайского края только начаты. Изучается общее состояние здоровья, функциониро­вание отдельных систем организма, выявление генетических изме­нений. Целью данной работы было исследование влияния ядерных взрывов на Семипалатинском полигоне на функциональную актив­ность печени у женщин, проживавших в районах подвергавшихся воздействию радиоактивных продуктов ядерных взрывов, как органа занимающего “центральное место” в процессах обмена веществ. В соответствии с целью работы решались следующие задачи:

    1) оценка белоксинтезирующей функции печени;

    2) исследование обезвреживающей способности печени;

    3) изучение депонирующей функции печени;

    На данный момент исследования еще не завершены, но у местных жителей были обнаружены учащения случаев заболевания раком и другими заболеваниями. Все сказанное выше доказывает, что ядерное оружие является чуть ли не наиболее опасным радиационно опасным обьектом. При аварии последствия ядерного взрыва будут развиваться по принципу описанному выше, кроме того, в случае нахождения атомной бомбы (например склада по хранению оружия) в населенном пункте, количество жертв будет в тысячи, десятки тысяч раз больше. Основным источником радиоактивного заражения при ядерных взрывах являются осколки деления ядерного горючего, в качестве которого используются уран-233, уран-235 и плутоний-239.Кроме того, в комбинированных боеприпасах используется уран-238. Другим источником радиоактивного заражения является та часть горючего, которая не участвовала в ядерной реакции. Так как доля ядерного горючего, принимающего участие в реакции деления, сравнительно мала и, по некоторым данным, не превышает 20%, оставшаяся часть ядерного горючего, будучи раздроблена силой взрыва на мельчайшие частицы, также явится источником радиоактивных частиц. Третьим источником радиоактивного заражения является наведенная активность, возникающая в результате воздействия потока нейтронов, образующихся в момент взрыва, на некоторые химические элементы, входящие в состав грунта и в оболочку ядерного боеприпаса.

    3.2 Атомный флот.

    На первом месте по колличеству в российском флоте и во флоте зарубежных стран стоят атомные подводные лодки (АПЛ). Поскольку АПЛ приходится плавать на больших глуби-нах, а, следовательно, при большом внешнем давлении, то принимаются особые меры по защите реактора. При повреждении реакторного отсека может возникнуть течь, произоидет облучение воды и, подхваченная течением, она может достичь побережья любого конти- нента. Следом возникнет заражение близ лежащих территорий и обитателей вод данной местности. Но не только плавающие атомоходы представляют опасность для окружающей среды и обитателей планеты. И затонувшие на большой глубине и списанные, они ставят перед человечеством очень сложную проблему захоронения смертельно опасных радио- активных отходов. Из-за несоверенства технологий и низкого качества материалов при высокой температуре и давлении постоянно происходят течи радиоактивного контура и другие аварии, связанные с облучением людей. В итоге после нескольких лет эксплуатации радиационная обстановка на некоторых лодках не позволяет проводить ремонтные работы в реакторном отсеке из-за опасности для жизни личного состава. После чего реактор вырезают, вынимают тепловыделяющий канал, затем заполняют его твердеющей смесью и затапли- вают. Но вынуть тепловыделяющий канал удается не всегда и реактор топят с радио- активными элентами. По заявлению МАГАТЭ глубина затопления подводных лодок и атомных реактаров составляет 4000 м, но возникают ситуации, при которых лодки затапли- вают на меньших глубинах. Так, например, была затоплена лодка К-27 в Карском море с координатами 72 31’ с.ш. и 55 30’ в.д. Ясно, что такие ”хранилища” представляют наибольшую опасность.

    За время холодной войны СССР и США накопили огромное количество подводных лодок различного назначения и, в настоящее время, стоит проблема утилизации этих подводных лодок и захоронения радиоактивных отходов и ядерных реакторов с них. В России разработан проект государственной программы по обращению с радиоактивными отходами до 2005г. Однако практическое осуществление программы сталкивается с cерьезными трудностями. Не созданы хранилища для реакторных отсеков, в которых они могли бы содержаться тысячелетиями вплоть до естественного распада плутония-239, или до эксплуатации топлива в реакторах на быстрых нейтронах. Соединенные Штаты для хранения радиоактивных отходов всей Америки выбрали гору Юкка-Маунти в штате Невада. Только экспертиза на предмет возможности встроить в эту гору хранилище для радиоактивных отходов обошлась в миллиард долларов, строительство потребует 8 миллиардов. Хранилище представляет собой штольню длинной в 170км. Экспертизе потребовалось ответить на такие вопросы: Возможно ли поступление воды в штольню? Возможны ли в этом районе в ближайшие 10 тыс. лет вулканические явления или землетрясения, способные разрушить хранилище и “высвободить” продукты радиоактивного распада? Существуют и проекты “саркофагов” для реакторных отсеков. Они имеют достаточные научные обоснования. Известно, что вырезанный в 1959г. и затопленный реакторный отсек с подводной лодки “Си Вулф” за 20 лет снизил радиоактивость за счет естественного распада на 90%. Мы же пока копим радиоактивные отходы

    3.3 АЭС.

    Источником облучения, вокруг которого ведутся наиболее интенсивные споры, и являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. К концу 1984 года в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 13% суммарной мощности всех источников электроэнергии и была равна 220 ГВт. До сих пор каждые 5 лет эта мощность удваивалась, однако, сохранится ли такой темп роста в будущем, неясно, Оценки предполагаемой суммарной мощности атомных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому экономический спад, реализация мер по экономии электроэнергии, а также противодействие со стороны общественности. Согласно последней оценке МАГАТЭ (1983 г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое дело. Начнем с того, что утечка радиоактивного материала даже у однотипных установок одинаковой конструкции очень сильно варьирует. Например, у корпусных кипящих реакторов с водой в качестве теплоносителя и замедлителя (Boiling Water Reactor, BWR) уровень утечки радиоактивных газов для двух разных установок (или для одной и той же установки, но в разные годы) может различаться в миллионы раз. Доза облучения от ядерного реактора зависит от вpемени и pасстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически бесконечно. При этом различные радионуклиды также ведут себя по-разному: одни распространяются в окружающей среде быстро, другие чрезвычайно медленно. Чтобы разобраться в этой ситуации, НКДАР разработал для каждого этапа ядерного топливного цикла параметры гипотетической модельной установки, имеющей типичные конструктивные элементы и расположенной в типичном географическом районе с типичной плотностью населения. НКДАР изучил также данные об утечках на всех ядерных установках в мире и определил среднюю величину утечек, приходящуюся на гигаватт-год вырабатываемой электроэнергии. Такой подход дает общее представление об уровне загрязнения окружающей среды при реализации программы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует пользоваться крайне осторожно, поскольку они зависят от многих специально оговоренных в докладе НКДАР допущений. Существует пять основных типов энергетических реакторов: водо-водяные реакторы с водой под давлением (Pressurised Water Reactor, PWR), водо-водяные кипящие реакторы (Boiling Water Reactor, BWR), разработанные в США и наиболее распространенные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора-размножителя на быстрых нейтронах, которые представляют собой ядерные реакторы следующего поколения. Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В последнее время наблюдается тенденция к уменьшению количества выбросов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствованиями, частично с введением более строгих мер по радиационной защите. В мировом масштабе примерно 10% использованного на АЭС ядерного топлива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимаются такой переработкой в промышленном масштабе: в Маркуле и Ла-Are (Франция) и в Уиндскейле (Великобритания). Самым “чистым» является завод в Маркуле, на котором осуществляется особенно строгий контроль, поскольку его стоки попадают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попадает в окружающую среду не при переработке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки. За период с 1975 по 1979 год на каждый гигаватт -год выработанной энергии уровеньзагрязнений от завода в Уиндскейле по  - активности примерно в 3,5 раза, а по  -активности в 75 раз превышал уровень загрязнений от завода в Ла-Are. С тех пор ситуация на заводе в Уиндскейле значительно улучшилась, однако в пересчете на единицу переработанного ядерного горючего это предприятие по-прежнему остается более “грязным “, чем завод в Ла-Are. Можно надеяться, что в будущем утечки на перерабатывающих предприятиях будут ниже, чем сейчас. Существуют проекты установок с очень низким уровнем утечки в воду, и НКДАР взял в качестве модельной установку, строительство которой планируется в Уиндскейле. Взрыв или повреждение ядерного реактора несет с собой огромную экологическую катастрофу. Не смотря на то, что при взрыве не высвобождается огромного колличества энергии, как при атомном взрыве последствия в результате заражения будут не меньшими. Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека). При одноразовом выбросе радиоактивных веществ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоак- тивного облака имеет вид эллипса. Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС см. в Приложении 1 таблица 1.

    Показатели размеров зон заражения см. в Приложении 1 таблица 2.

    Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения радиоактивных веществ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности. На средней фазе источником внешнего облучения являются радиационные вещества, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе. Есть мнение, что «шум», поднятый вокруг аварии на ЧАЭС жур­налистами и политиками, как фактор стресса и отрицательных эмо­ций нанес здоровью людей больший ущерб, чем радиационный выб­рос. Но, возможно, что АЭС не так опасны, как мы предполагаем. Ивестно что, с начала использования этих электростанций произошло много аварий и катастроф. Самая страшная катастрофа на АЭС произошла в 1986 в Чернобыле. В октябре 1989 года правительство СССР официально обрати­лось к МАГАТЭ с просьбой провести международную экспертизу раз­работанной в СССР концепции безопасного проживания населения на территориях, подвергшихся радиоактивному загрязнению и дать оценку эффективности мероприятий по охране здоровья населения, проводимых в этих районах. В результате был создан Международ­ный Чернобыльский Проект (МЧП), в котором приняли участие более двухсот ученых-экспертов из различных международных организаций и разных стран мира. МЧП отметил значительное, не обусловленное радиацией, на­рушение здоровья у жителей как обследованных загрязненных, так и обследованных контрольных населенных пунктов, которые изуча­лись в рамках Проекта, но не было выявлено каких-либо нарушений здоровья, непосредственно связанных с воздействием радиации. Авария повлекла за собой значительные отрицательные психологи­ческие последствия, выраженные в повышенном чувстве тревоги и возникновении стресса из-за постоянного ощущения весьма сильной неопределенности, что наблюдалось и за пределами загрязненных районов. На основании оцененных в рамках Проекта доз и принятых в настоящее время оценок радиационного риска можно сказать, что будущее увеличение числа раковых заболеваний или наследственных изменений по сравнению с естественным уровнем будет трудно оп­ределить даже при широкомасштабных и хорошо организованных дол­госрочных эпидемиологических исследованиях. Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рам­ках Проекта. По сравнению с контрольными районами не было обна­ружено достоверных отличий числа и видов психологических нару­шений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменени.

    3.4 Производство радиоактивного топлива

    и захоронение радиоактивных отходов.

    До сих пор мы совсем не касались проблем, связанных с первой и последней стадией ядерного топливного цикла: производством радиоактивного топлива и захоронением высокоактивных отходов от АЭС и других предприятий. Проблема захоронения является наиболее острой. Во-первых: потому, что в результате деятельности АЭС и других предприятий постоянно появляются радиоактивные вещества непригодные к дальнейшему использованию. Во-вторых: каждое предприятие вырабатывает свои отходы (см. Приложение 2). Эти проблемы находятся в ведении правительств соответствующих стран. В некоторых странах ведутся исследования по отверждению отходов с целью последующего их захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захороненные таким образом радиоактивные отходы не будут источником облучения населения в обозримом будущем. НКДАР не оценивал ожидаемых доз облучения от таких отходов, однако в материалах по программе за 1979 год сделана попытка предсказать судьбу радиоактивных материалов, захороненных под землей. Оценки показали, что заметное количество радиоактивных веществ достигнет биосферы лишь спустя 10 - 20 лет. По данным НКДАР, весь ядерный топливный цикл дает ожидаемую коллективно эффективную эквивалентную дозу облучения за счет короткоживущих изотопов около 5,5 чел-Зв на каждый гигаватт-год вырабатываемой на АЭС электроэнергии. Из них процесс добычи руды дает вклад 0,5 чел-Зв, ее обогащение 0,04 чел-Зв, производство ядерного топлива 0,002 чел-Зв, эксплуатация ядерных реакторов около 4 чел-Зв (наибольший вклад) и, наконец, процессы, связанные с регенерацией топлива 0,95 чел-Зв. Как уже отмечалось, данные по регенерации получены из оценок ожидаемых утечек на заводах, которые предполагается построить будущем. На самом же деле для современных установок эти цифры в 10 - 20 раз выше, но эти установки перерабатывают лишь 10% отработанного ядерного топлива, таким образом, приведенная выше оценка остается справедливой. 90% всей дозы облучения, обусловленной короткоживущими изотопами, население получает в течение года после выброса, 98% в течение 5 лет. Почти вся доза приходится на людей, живущих не далее нескольких тысяч километров от АЭС. Ядерный топливный цикл сопровождается также образованием большого количества долгоживущих радионуклидов, которые распространяются по всему земному шару. НКДАР оценивает коллективно эффективную ожидаемую эквивалентную дозу облучения такими изотопами в 670 чел-Зв на каждый гигаватт-год вырабатываемой электроэнергии, из которых на первые 500 лет после выброса приходится менее 3%. Таким образом, от долгоживущих радионуклидов все население Земли получает примерно такую же среднегодовую дозу облучения, как и население, живущее вблизи АЭС, от короткоживущих радионуклидов, при этом долгоживущие изотопы оказывают свое воздействие в течение гораздо более длительного времени. 90% всей дозы население получит за время от тысячи до сотен миллионов лет после выброса. Следовательно, люди, живущие вблизи АЭС, даже при нормальной работе реактора получают всю дозу сполна от короткоживущих изотопов и малую часть дозы от долгоживущих. Эти цифры не учитывают вклад в облучение от радиоактивных отходов, образующихся в результате переработки и от отработанного топлива. Есть основания полагать, что в ближайшие несколько тысяч лет вклад радиоактивных захоронений в общую дозу облучения будет оставаться пренебрежимо малым 0,1 - 1% от ожидаемой коллективной дозы для всего населения. Однако радиоактивные отвалы обогатительных фабрик, если их не изолировать соответствующим образом, без сомнения, создадут серьезные проблемы. Примерно половина всей урановой руды добывается открытым способом, а половина шахтным. Добытую руду везут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источником загрязнения окружающей среды радиоактивными веществами. Если рассматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе переработки руды образуется огромное количество отходов (хвостов). Вблизи действующих обогатительных фабрик (в основном в Северной Америке) уже скопилось 120 млн. т. отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т. Эти отходы будут оставаться радиоактивными в течение миллионов лет, когда фабрика давно перестанет существовать. Таким образом, отходы являются главным долгоживущим источником об лучения населения, связанным с атомной энергетикой. Однако их вклад в облучени можно значительно уменьшить, если отвалы заасфальтировать или покрыть и поливинилхлоридом. Конечно, покрытие необходимо будет регулярно менять. Урановый концентрат, поступающий обогатительной фабрике, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топливного цикла. Теперь ядерное топливо готово к использованию в ядерном реакторе. Если учесть эти два дополнительных источника облучения, связанные с производством радиоактивного топлива, то для населения Земли ожидаемая коллективно эффективная эквивалентная доза облучения за счет долгоживущих радионуклидов составит около 4000 чел-Зв на каждый гигаватт-год вырабатываемой энергии. Все подобные оценки, однако, неизбежно оказываются ориентировочными, поскольку трудно судить не только о будущей технологии переработки отходов, численности населения и местах его проживания, но и о дозе, которая будет иметь место через 10000 лет. Поэтому НКДАР советует не слишком полагаться на эти оценки при принятии каких-либо решений. Годовая коллективно эффективная доза облучения от всего ядерного цикла в 1980 году составляла около 500 чел-Зв. Ожидается, что к 2000 году она возрастет до 10000 чел-Зв, а к 2100 году до 200000 чел-Зв. Эти оценки основаны на пессимистическом предположении, что нынешний уровень выбросов сохранится, и не будут введены существенные технические усовершенствования. Но даже и в этом случае средние дозы будут малы по сравнению с дозами, получаемыми от естественных источников, в 2100 году они составят лишь 1% от естественного фона. Люди, проживающие вблизи ядерных реакторов, без сомнения, получают гораздо большие дозы, чем население в среднем. Тем не менее в настоящее время эти дозы обычно не превышают нескольких процентов естественного радиационного фона. Более того, даже доза, полученная людьми, живущими около завода в Уиндскейле, в результате выброса цезия-137 в 1979 году была, по-видимому, меньше 1/100 дозы, полученной ими от естественных источников за тот же год. Все приведенные выше цифры, конечно, получены в предположении, что ядерные реакторы работают нормально. Однако количество радиоактивных веществ, поступивших в окружающую среду при авариях, может оказаться гораздо больше. В одном из последних докладов НКДАР была сделана попытка оценить дозы, полученные в результате аварии в Тримайл-Айленде в 1979 году и в Уиндскейле в 1957 году. Оказалось, что выбросы при аварии на АЭС в Тримайл-Айленде были незначительными, однако, согласно оценкам, в результате аварии в Уиндскейле ожидаемая коллективно эффективная эквивалентная доза составила 1300 чел-Зв. Комитет, однако, считает, что нельзя прогнозировать уровень аварийных выбросов на основании анализа последствий этих двух аварий. Но вернемся теперь к нашим проблемам. За последнее время в России тоже произошли аварии на перерабатывающих заводах. 31.08.94 г. подгорание тепловыделяющей сборки ядерного реактора на ПО “Маяк”, в результате которого произошел выброс в атмосферу радионуклидов суммарной бета-активностью 230 мКи и активностью по цезию-137 около 150 мКи. Суммарная бета-активность выпадений, отобранных в ближних зонах ПО “Маяк” сразу после радиационного инцидента 1994 г. на этом предприятии, не превышала пределов обычных колебаний уровней фоновых выпадений для этих местностей. Радиоактивное загрязнение местности накопление на почве радиоизотопов, выпадающих из атмосферы, в течение 1994 г. практически не сказалось на уровнях загрязнения, сложившихся к концу предыдущего 1993 г. Географическое распределение радиоактивного загрязнения почвы на территории страны в 1994 г. также почти не изменилось. Захоронение радиоактивных отходов на дне морей и океанов практикуется с момента появления атомных реакторов на судах. Первыми это сделали США в 1946г., затем великобритания- в1949г., Япония- в 1955г. Первый морской могильник жидких радиоактивных отходов появился в СССР не позднее 1964г., официальных данных об этом естественно нет. Радиактивные отходы помещаются в специальные контейнеры, которые теоретически не разрушаются моркой водой и глубинным давлением. По выработанным МАГАТЭ рекомендациям хоронить предполагается на глубине 4000м, на достаточном удалении от континентов и островов и в районах с минимальной продуктивностью моря, то есть там, где не ведется промышленный лов рыбы и других морских животных. На западе информация о местах захоронения с указанием точных координат, глубины, массы, числа контейнеров и т.п. доступна не только специалистам, но и независимым исследователям. Рассчеты официальных экспертов достаточно оптимистичны: в течение 500 лет даже при существующих уровнях сбросов на одной площадке индивидуальные дозы облучения не должны достигнуть значительных величин. Однако в России существует и другая техника захоронения. Радиоактивные отходы складируются на списанных судах ВМФ, и когда ставить контейнеры с отходами уже некуда, суда буксируются в океан и топятся. Не соблюдаются нормы МАГАТЭ по содержимому затапливаемых контейнеров. Так, например, в заливе Амбросимова недалеко от архипелага Новая Земля, был обнаружен плавающий контейнер с уровнем излучения 160 Р/ч. Не серьезно сравнивать с рекомендациями МАГАТЭ и глубины затопления радиоактивных отходов в районе Новой Земли. Вместо положенного минимума в 4000 м, они колеблются от 18 до 270м. В 1992г. аппарат Президента России рассекретил данные о загрязнении северных и дальневосточных морей: ”В 1959-1992 гг. наша страна сбросила в северные моря жидких радиоактивных отходов суммарной активностью около 20,6 тысяч кюри и твердых – суммарная активность около 2,3миллиона кюри. В морях дальнего востока эти величины составили соответственно:12,3 и 6,2 тысячи кюри”. Видно, что затопление радиоактивных контейнеров производилось с нарушением элементарных норм, и до настоящего времени никто не контролирует их состояние. На Южном Урале в р. Теча, куда в 40-50-х гг. производились сбросы жидких радиоактивных стоков ПО “Маяк”, концентрации стронция-90 в речной воде в 100-1000 раз превышали фоновые. Уровни загрязнения морской воды стронцием-90 также не изменились по сравнению с 1993 г. В водах Каспийского, Охотского, Карского и Баренцева морей, а также в водах Тихого океана, омывающих берега Камчатки, концентрация стронция-90 колебалась в пределах (0,03-0,6)Ч10-12 Ки/л. Концентрации цезия-137, стронция-90 и плутония-239,240 в водах Баренцева и Карского морей, включая места захоронения радиоактивных отходов, сравнимы с наблюдаемыми в других морях и составляют:

    цезий -137 - (8-54) Ч10-14 Ки/л;

    стронций-90 - (8-32) Ч10-14 Ки/л;

    плутоний-239,240 - (5-43) Ч10-17 Ки/л.

    4 Заключение.

    Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз. На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии. На федеральном уровне государственный учёт и контроль ядерных материалов осуществляют Министерство по атомной энергии (Минатом России) и Министерство обороны РФ. На ведомственном уровне эти функции выполняют федеральные органы исполнительной власти, в непосредственном распоряжении которых находятся ядерные материалы. На уровне эксплуатирующей организации, деятельность которой связана с производством, хранением или использованием ядерных материалов, их учёт и контроль осуществляет её администрация. Надзор же за самой системой учёта и контроля ядерных материалов для использования в мирных целях осуществляет Федеральный надзор России по ядерной и радиационной безопасности. Государственный таможенный комитет РФ контролирует перемещение ядерных материалов через таможенную границу. Особо подчёркивается, что вмешательство в деятельность эксплуатирующей организации в части использования ядерной установки не допускается. При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо. В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности. Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри. В Москве имеются радиационно-опасные объекты, аварии на которых могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы (см. Приложение 3). В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.

    Все вышеперечисленное требует соответствующей учебно-материальной базы, основанной на реальных документах, максимально приближенных к реальной технике тренажерах, макетах, муляжах. Процесс обучения целесообразно проводить комплексным методом в ограниченных по количеству группах, сочетая привитие глубоких знаний и твердых практических навыков. Максимальные наглядность, доступность и научность необходимо сочетать без взаимного ущерба и без угрозы стать заложниками финансового дефицита.

    ПРИЛОЖЕНИЕ 1.

    таблица 1.

    Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС.


    таблица 2.

    Показатели размеров зон заражения (тип реактора - РБМК-1000).

    Приложение 2.

    Количество радиоактивных отходов, хранящихся на предприятиях Минатома России

    Источник образования

    Радиоактивные отходы

    Количество (м3) Активность

    Место хранения

    Добыча и переработка руды

    1,0Ч108 1,8Ч105


    Хранилища и площадки

    Обогащение урана и производство тепловыделяющих элементов

    1,6Ч106 4,0Ч103


    Хранилища на предприятиях

    Атомные электростанции

    1,5Ч105 4,2Ч104

    0,8Ч105 0,7Ч103

    1,6Ч104 1,0Ч103


    Металлические емкости

    Хранилища на АЭС

    Хранилища на АЭС

    Радиохимический комплекс

    предприятия

    (переработка ОТВС

    с учетом отходов,

    накопившихся при

    получении оружейного

    плутония)

    2,5Ч104 5,7Ч108

    9,5Ч103 2,0Ч108

    4,0Ч108 7,0Ч108

    1,0Ч108 1,2Ч107

    ~ 6,0Ч108 ~ 1,5Ч109


    Стальные емкости на ПО “Маяк”

    Хранилища на ПО “Маяк”

    Емкости, водоемы, бассейны

    Бетонированные хранилища на предприятиях

    Примечание: НАО - низкоактивные радиоактивные отходы

    САО - среднеактивные радиоактивные отходы

    ВАО - высокоактивные радиоактивные отходы

    Количество радиоактивных отходов,хранящихся на предприятиях различных ведомств

    Источник образования

    Радиоактивные

    Количество

    Активность

    Место хранения

    Военно-морской флот

    Береговые и

    плавучие базы

    Бетонные хранилища

    Судостроительная промышленность

    Береговые и

    плавучие базы

    Хранилища на

    предприятиях

    Гражданский морской флот

    Береговые

    хранилища

    Береговые

    хранилища

    Береговые

    Хранилища

    Пункты захоронения РАО от предприятий неядерного топливного цикла (16 пунктов)

    Хранилища спецкомбинатов

    “РАДОН”



    Количество отработавшего ядерного топлива, хранящегося на предприятиях

    Минатома, Минтранса и ВМФ России

    Ведомство, Радиоактивные отходы

    вид топлива Количество (т) Активность (Ки) Место хранения

    Приложение 3.

    Перечень Московских предприятий и организаций, в состав которых входят особо радиационно-опасные и ядерно-опасные производства

    и объекты, осуществляющие разработку, производство, эксплуатацию,

    хранение, транспортировку, утилизацию ядерного оружия,

    компонентов ядерного оружия, радиационно-опасных

    материалов и изделий

    1. Государственное предприятие "Московский завод полиметаллов"

    2. Производственное обединение "Машиностроительный завод "Молния"

    3. Всерегиональное обединение "Изотоп"

    4. Опытный химико-технологический завод

    5. Акционерное общество "Промэлектромонтаж"

    6. Федеральное государственное предприятие "База спецперевозок"

    7. Государственный научный центр Российской Федерации -

    Всероссийский научно-исследовательский институт неорганических материалов имени А.А.Бочвара

    8. Всероссийский научно-исследовательский институт химической технологии

    9. Научно-исследовательский и конструкторский институт энерготехники

    10. Всероссийский научно-исследовательский институт технической физики и автоматизации

    11. Научно-инженерный центр "Союзный научно-исследовательский институт приборостроения"

    12. Государственный научный центр Российской Федерации - Институт теоретической и экспериментальной физики

    13. Научно-исследовательский испытательный центр радиационной безопасности космических обектов

    14. Государственный научный центр Российской Федерации - Институт биофизики

    15. Завод "Медрадиопрепарат"

    16. Государственный научный центр Российской Федерации - Научно­исследовательский физико-химический институт имени Л.Я.Карпова

    17. Московский государственный инженерно-физический институт

    (технический университет)

    18. Государственный научный центр Российской Федерации - Российский научный центр "Курчатовский институт"

    19. Московское научно-производственное обединение "Радон"




    Тверской Государственный Университет




    Тема : «Радиационно опасные объекты»


    Дисциплина : «Защита населения и территорий в чрезвычайных ситуациях»


    Группа :23


    Выполнил : Хашин Виталий Анатольевич


    Руководитель :


    1.Введение…………………………………………………………...1

    2.Радиационная опасность………………………………………..1

    3.Радиационно опасные объекты………………………………...2

    3.1.Ядерное оружие…………………………………………………3

    3.2.Атомный флот…………………………………………………..4

    3.3.АЭС……………………………………………………………….5

    3.4.Производство радиоактивного топлива и захоронение радиоактивных отходов……………………………………………8

    4.Заключение………………………………………………………..11


    Приложение 1……………………………………………………….12

    Приложение 2……………………………………………………….13

    Приложение 3……………………………………………………….16


    Литература:

      Кривошеин Д.А., “Экология и безопасность жизнедеятельности” М., 2000 г.

      Осипенко Л., Жильцов Л., Мормуль Н., “Атомная подводная эпопея” М., 1994 г.

    3.Перечень предприятий и организаций, в состав которых входят особо радиационно-опасные и ядерно-опасные производства и объекты, осуществляющие разработку, производство, эксплуатацию, хранение, транспортировку, утилизацию ядерного оружия, компонентов ядерного оружия, радиационно-опасных материалов и изделий.

    4.Я. Е. Белозеров, Ю. К. Несытов ”Внимание! Радиоактивное заражение” Военное издательство министерства обороны СССР М., 1982 г.

    5 . У.Я.Маргулис Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

    6. М.Ю.Вышенский, А.М.Русанов "Организационно-технические вопросы обучения по темам безопасной эксплуатации радиационно-опасных объектов" Пермское высшее военное командно-инженерное училище ракетны x войск, сборник статей "Воениздат".

    7.У.Я.Маргулис Радиация и защита М.,1969г.



     

    Возможно, будет полезно почитать: