Сила тока: определение, формулы. «Сила тока

Времена, когда ток обнаруживался с помощью личных ощущений ученых, пропускавших его через себя, давно миновали. Теперь для этого применяют специальные приборы, называемые амперметрами .

Это прибор, служащий для измерения силы тока. Что понимают под силой тока?

Обратимся к рисунку 21, б. На нем выделено поперечное сечение проводника, через которое проходят заряженные частицы при наличии в проводнике электрического тока. В металлическом проводнике этими частицами являются свободные электроны. В процессе своего движения вдоль проводника электроны переносят некоторый заряд. Чем больше электронов и чем быстрее они движутся, тем больший заряд будет ими перенесен за одно и то же время.

Силой тока называется физическая величина, показывающая, какой заряд проходит через поперечное сечение проводника за 1 с.

Пусть, например, за время t = 2 с через поперечное сечение проводника носители тока переносят заряд q = 4 Кл. Заряд, переносимый ими за 1 с, будет в 2 раза меньше. Разделив 4 Кл на 2 с, получим 2 Кл/с. Это и есть сила тока. Обозначается она буквой I:

I - сила тока.

Итак, чтобы найти силу тока I, надо электрический заряд q, прошедший через поперечное сечение проводника за время t, разделить на это время:

I = q/t (10.1)

Единица силы тока называется ампером (А) в честь французского ученого А. М. Ампера (1775-1836). В основу определения этой единицы положено магнитное действие тока, и мы на нем останавливаться не будем.

Если сила тока I известна, то можно найти заряд q, проходящий через сечение проводника за время t. Для этого надо силу тока умножить на время:

Полученное выражение позволяет определить единицу электрического заряда - кулон (Кл):

1 Кл = 1 А · 1 с = 1 А·с.

1 Кл - это заряд, который проходит за 1 с через поперечное сечение проводника при силе тока 1 А.

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например миллиампер (мА) и микроампер (мкА):

1 мА = 0,001 А, 1 мкА = 0,000001 А.

Как уже говорилось, измеряют силу тока с помощью амперметров (а также милли- и микроамперметров). Демонстрационный гальванометр, о котором упоминалось выше, представляет собой обычный микроамперметр.

Существуют разные конструкции амперметров. Амперметр, предназначенный для демонстрационных опытов в школе, изображен на рисунке 28. На этом же рисунке приведено его условное обозначение (кружок с латинской буквой «А» внутри).

При включении в цепь амперметр, как и всякий другой измерительный прибор, не должен оказывать заметного влияния на измеряемую величину. Поэтому амперметр устроен так, что при его включении сила тока в цепи почти не изменяется.

В зависимости от назначения в технике используют амперметры с разной ценой деления. По шкале амперметра видно, на какую наибольшую силу тока он рассчитан. Включать его в цепь с большей силой тока нельзя, так как прибор может испортиться.

Для включения амперметра в цепь ее размыкают и свободные концы проводов присоединяют к клеммам (зажимам) прибора. При этом необходимо соблюдать следующие правила:

1) амперметр включают последовательно с тем элементом цепи, в котором измеряют силу тока;

2) клемму амперметра со знаком «+» следует соединять с тем проводом, который идет от положительного полюса источника тока, а клемму со знаком «–» - с тем проводом, который идет от отрицательного полюса источника тока.

При включении амперметра в цепь не имеет значения, с какой стороны (слева или справа) от исследуемого элемента его подключать. В этом можно убедиться на опыте (рис. 29). Как видим, при измерении силы тока, проходящего через лампу, оба амперметра (и тот, что слева, и тот, что справа) показывают одно и то же значение.


1. Что такое сила тока? Какой буквой она обозначается? 2. По какой формуле находится сила тока? 3. Как называется единица силы тока? Как она обозначается? 4. Как называется прибор для измерения силы тока? Как он обозначается на схемах? 5. Какими правилами следует руководствоваться при включении амперметра в цепь? 6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?

Электрический ток представляет собой направленное движение электрических зарядов. Величина тока определяется количеством электричества, проходящего через поперечное сечение проводника в единицу времени.

Одним количеством электричества, проходящим по проводнику, мы еще не можем полностью охарактеризовать электрический ток. Действительно, количество электричества, равное одному кулону, может проходить по проводнику в течение одного часа, и тоже самое количество электричества может быть пропущено по нему в течение одной секунды.

Интенсивность электрического тока ко втором случае будет значительно больше, чем в первом, так как то же самое количество электричества проходит в значительно меньший промежуток времени. Для характеристики интенсивности электрического тока количество электричества, проходящее по проводнику, принято относить к единице времени (секунде). Количество электричества, проходящее по проводнику в одну секунду, называется силой тока. В качестве единицы силы тока в системе принят ампер (а).

Сила тока - количество электричества, проходящее через поперечное сечение проводника в одну секунду.

Сила тока обозначается английской буквой I .

Ампер - единица силы электрического тока (одна из ), обозначается А. 1 А равен силе не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы на участке проводника длиной 1 м силу взаимодействия, равную 2 10 –7 Н на каждый метр длины.

Сила тока в проводнике равна одному амперу, если ежесекундно через поперечное сечение его проходит один кулон электричества.

Ампер - сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Часто применяют вспомогательные единицы: 1 миллиампер (ма) = 1/1000 ампер = 10 -3 ампер, 1 микроампер (мка) = 1/1000000 ампер = 10 -6 ампер.

Если известно количество электричества, прошедшее через сечение проводника за некоторый промежуток времени, то силу тока можно найти по формуле: I=q/t

Если в замкнутой цепи не имеющей разветвлений, проходит электрический ток, то через любое поперечное сечение (в любом месте цепи) проходит в секунду одно и тоже количество электричества, независимо от толщины проводников. Это объясняется тем, что заряды не могут накапливаться в каком-нибудь месте проводника. Следовательно, сила тока в любом месте электрической цепи одинакова.

В сложных электрических цепях с различными ответвлениями это правило (постоянство тока во всех точках замкнутой цепи) остается, конечно, справедливым, но оно относится только к отдельным участкам общей цепи, которые могут рассматриваться как простые.

Измерение силы тока

Для измерения силы тока служит прибор, который называется амперметром. Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры, или гальванометры. На рис. 1. показано условное графическое изображение амперметра и миллиамперметра на электрических схемах.

Рис. 1. Условные обозначения амперметра и миллиамперметра

Рис. 2. Амперметр

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи (см. рис. 3). Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр, т. е. до потребителя (считая ) или после него, совершенно безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Рис. 3. Включение амперметра

Иногда ошибочно считают, что амперметр, включенный до потребителя, будет показывать большую силу тока, чем включенный после потребителя. В этом случае считают, что «часть тока» тратится в потребителе для приведения его в действие. Это, конечно, неверно, и вот почему.

Электрический ток в металлическом проводнике представляет собой электромагнитный процесс, сопровождаемый упорядоченным движением электронов по проводнику. Однако энергия переносится не электронами, а электромагнитным полем, окружающим проводник.

Через любое поперечное сечение проводников простой электрической цепи проходит в точности одно и то же количество электронов. Какое количество электронов вышло от одного полюса источника электрической энергии, такое же количество их пройдет через потребитель и, конечно, поступит к другому полюсу, источника, ибо электроны как материальные частички израсходоваться при своем движении не могут.

Рис. 4. Измерение силы тока с помощью мультиметра

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера). Например, сила тока электрической плитки примерно 4 - 5 ампер, лампы накаливания - от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

В ходе этого урока будет дано определение явлению электрического тока, рассмотрены различные ситуации его протекания и различные его воздействия на тела. Мы также охарактеризуем ток, используя величину силы тока, дадим ее определение, а также рассмотрим ее связь с другими физическими величинами.

С этого урока мы начинаем повторять полученные нами в восьмом классе знания в об электрическом токе, а также углублять эти знания.

Определение. Электрический ток – направленное упорядоченное движение заряженных частиц (рис. 1).

Рис. 1. Движение заряженных частиц

Упомянутые частицы могут быть совершенно разными: электронами, ионами (как положительными, так и отрицательными). Даже обычное макротело (например, шарик), которому придан некоторый заряд и некоторая скорость, своим движением производит ток.

Важно также понимать, что упорядоченное движение не обязано распространяться на все частицы. Каждая частица может двигаться хаотически, однако в целом вся масса этих частиц смещается в определенном направлении, и именно это смещение обуславливает наличие тока (рис. 2).

Рис. 2. Упорядоченное движение

Для простоты мы будем изучать так называемый постоянный ток , то есть тот ток, при котором средняя скорость заряженных частиц не меняет ни своего значения, ни направления.

Главной физической величиной, характеризующей ток, является сила тока.

Ток имеет три основных действия (свойства).

  • Тепловое. При пропускании тока через проводник идет активное выделение тепла (рис. 3).

Рис. 3. Тепловое действие тока

  • Химическое. Протекание тока может влиять на химическую структуру веществ (рис. 4).

Рис. 4. Химическое действие тока

  • Магнитное. Наличие тока инициирует наличие магнитного поля (рис. 5).

Рис. 5. Магнитное действие тока

Сила тока определяется отношением заряда, прошедшего через поперечное сечение за единицу времени (за интервал времени) (рис. 6).

Определение. Сила тока – физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, к промежутку времени, за который этот заряд прошел.

Единица измерения: А – ампер (в честь французского физика Андре-Мари Ампера (рис. 7 ).

Рис. 7. Андре-Мари Ампер (1775-1836)

Прибором для измерения силы тока является амперметр (рис. 8, 9). Это электрический прибор, который необходимо подключить в цепь последовательно тому участку, силу тока на котором необходимо измерить (рис. 10).

Рис. 8. Внешний вид амперметра

Рис. 9. Обозначение амперметра на электрической схеме

Рис. 10. Амперметр включается в цепь последовательно

Электрический ток можно сравнить с движением воды по трубе, а амперметр – прибор, который измеряет скорость этого движения.

Рассмотрим случай протекания постоянного тока в цилиндрическом проводнике и выведем формулу, определяющую скорость упорядоченного движения электронов в металлах.

Рис. 11. Схема протекания тока в проводнике

Запишем определение силы тока:

За время поперечное сечение успели пересечь все те электроны, находящиеся в пространстве проводника, ограниченном длиной (расстояние, которое прошли электроны за время ). Поэтому можно посчитать как:

Здесь: - заряд одной частицы; - концентрация электронов в проводнике.

Подставим это равенство в определение силы тока, и с учетом того, что - модуль значения заряда электрона:

Средняя скорость упорядоченного движения зарядов.

Получаем формулу:

То есть сила тока и скорость направленного движения электронов - прямо пропорциональные величины.

Для определения концентрации электронов необходимо применить формулы из курса молекулярной физики. Если сделать предположение, что на каждый атом вещества проводника приходится один электрон, то тогда справедливо:

Зная, что , получаем:

Подставим и , где - молярная масса (масса одного моль вещества); - число Авогадро (количество молекул в одном моле вещества). Получим:

То есть при нашем допущении концентрация свободных электронов зависит только от материала проводника (плотности и молярной массы).

Рис. 12. Все электроны по всему объему проводника начинают двигаться практически одновременно

На следующем уроке мы рассмотрим условия, наличие которых обязательно для существования тока.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Интернет-портал «Physics.ru» ().
  2. Интернет-портал «Mugo.narod.ru» ().
  3. Интернет-портал «Электрический ток. Сила и плотность тока» ().

Домашнее задание

  1. Стр. 101: № 775. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Движутся ли заряженные частицы в проводнике, по которому не течет ток?
  3. Какие действия тока можно наблюдать, пропуская ток через морскую воду?
  4. При какой силе тока за 4 с сквозь поперечное сечение проводника проходит 32 Кл?
  5. *Возможен ли электрический ток в отсутствии электрического поля?

Прохождение электрического тока через любую проводящую среду объясняется наличием в ней некоторого количества носителей заряда: электронов – для металлов, ионов – в жидкостях и газах. Как найти её величину, определяет физика силы тока.

В спокойном состоянии носители движутся хаотично, но при воздействии на них электрического поля движение становится упорядоченным, определяемым ориентацией этого поля – возникает сила тока в проводнике. Количество носителей, участвующих в переносе заряда, определяется физической величиной – силой тока.

От концентрации и заряда частиц-носителей, или количества электричества, напрямую зависит сила тока, проходящего через проводник. Если принять во внимание время, в течение которого это происходит, тогда узнать, что такое сила тока, и как она зависит от заряда, можно, используя соотношение:

Входящие в формулу величины:

  • I – сила электрического тока, единицей измерения является ампер, входит в семь основных единиц системы Си. Понятие «электрический ток» ввёл Андре Ампер, единица названа в честь этого французского физика. В настоящее время определяется как ток, вызывающий силу взаимодействия 2×10-7 ньютона между двумя параллельными проводниками, при расстоянии 1 метр между ними;
  • Величина электрического заряда, применённая здесь для характеристики силы тока, является производной единицей, измеряется в кулонах. Один кулон – это заряд, проходящий через проводник за 1 секунду при токе 1 ампер;
  • Время в секундах.

Сила тока через заряд может вычисляться с применением данных о скорости и концентрации частиц, угла их движения, площади проводника:

I = (qnv)cosαS.

Также используется интегрирование по площади поверхности и сечению проводника.

Определение силы тока с использованием величины заряда применяется в специальных областях физических исследований, в обычной практике не используется.

Связь между электрическими величинами устанавливается законом Ома, который указывает на соответствие силы тока напряжению и сопротивлению:

Сила электрического тока здесь как отношение напряжения в электрической цепи к её сопротивлению, эти формулы используются во всех областях электротехники и электроники. Они верны для постоянного тока с резистивной нагрузкой.

В случае косвенного расчета для переменного тока следует учитывать, что измеряется и указывается среднеквадратичное (действующее) значение переменного напряжения, которое меньше амплитудного в 1,41 раза, следовательно, максимальная сила тока в цепи будет больше во столько же раз.

При индуктивном или емкостном характере нагрузки вычисляется комплексное сопротивление для определённых частот – найти силу тока для такого рода нагрузок, используя значение активного сопротивления постоянному току, невозможно.

Так, сопротивление конденсатора постоянному току практически бесконечно, а для переменного:

Здесь RC – сопротивление того же конденсатора ёмкостью С, на частоте F, которое во многом зависит от его свойств, сопротивления разных типов ёмкостей для одной частоты значительно различаются. В таких цепях сила тока по формуле, как правило, не определяется – используются различные измерительные приборы.

Для нахождения значения силы тока при известных значениях мощности и напряжения, применяются элементарные преобразования закона Ома:

Тут сила тока – в амперах, сопротивление – в омах, мощность – в вольт-амперах.

Электрический ток имеет свойство разделяться по разным участкам цепи. Если их сопротивления различны, то и сила тока будет разной на любом из них, так находим общий ток цепи.

Для измерения силы тока применяется измерительный прибор, который называется . Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление , но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I , а к числу, чтобы было ясно, что это величина тока, приписывается буква А . Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

На измерительных приборах для измерения переменного тока перед буквой А ставится знак "~ ", а предназначенных для измерения постоянного тока ставится "". Например, –А означает, что прибор предназначен для измеренная силы постоянного тока.

О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока» . Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного ток величиной до 3 Ампер.

Схема измерения силы тока Амперметром

Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

Как измерять потребляемый ток электроприбором

Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.


Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.


У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А~ для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь .

Рассчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца .



 

Возможно, будет полезно почитать: