Методы снижения и предотвращения выбросов загрязнителей в атмосферу. Способы уменьшения загрязнения атмосферы

  • Административные методы управления: возможности и ограничения использования
  • Административные методы управления: возможности и ограничения использования.
  • Проблему уменьшения поступления ЗВ в атмосферу из стационарных источников решают двумя основными способами: путем использования технологических методов снижения и установкой пылегазоочистного оборудования. Применение того или иного метода подавления зависит от вида ЗВ, выброс которого необходимо уменьшить, технологического процесса и технических характеристик ИЗА.

    Методы снижения выбросов SО2:

    Технологическими методами уменьшения выбросов SО2 являются переход на сырье и топливо с более низким содержанием серы и использование на предприятиях теплоэнергетики промышленного и бытового назначения котельного оборудования с кипящим слоем.

    Из-за ухудшающейся в последнее время структуры потребления топлива и использования его высокосернистых видов основным методом подавления выбросов SO2 считают применение установок по десульфуризации отходящих газов.

    Известны аммиачный, аммиачно-циклический доломитовый методы очистки и метод, основанный на окислении SО2 на ванадиевом катализаторе. За рубежом широко используют метод подавления SО2, при котором дымовые газы орошаются известковым молоком в скрубберах. Однако в СССР, кроме отдельных опытно-промышленных установок, серийного оборудования по очистке отходящих газов от SO2 не выпускают. В этих условиях наиболее реальна замена высокосернистого топлива на низкосернистое.

    Снижение выбросов NОх:

    Основнымистационарными источниками поступления NOх в атмосферу являются процессы сжигания органического топлива и производство HNO3.

    В источниках, сжигающих органическое топливо, наиболее эффективны технологические методы уменьшения выбросов NOх. К ним относятся рециркуляция дымовых газов, применение специальных режимов горения и горелочных устройств и др. При правильной организации рециркуляции дымовых газов степень подавления NOх может достигать 30 - 40 %. Однако эффективность такого метода резко уменьшается с уменьшением номинальной мощности котельного оборудования.

    К технологическим методам относятся стадийное или нестехиометрическое сжигание топлива. Данный метод наиболее предпочтителен для котлов малой и средней производительности пара до 200 т/ч, при работе котлоагрегата с минимально допустимыми избытками воздуха.

    Эффективное подавление NOх наблюдается и при использовании специальных горелочных устройств с низким образованием NOх, таких, как низкотемпературные вихревые горелки и др.



    При производстве НNО3 в химической промышленности NOх подавляют за счет улучшения конструкции и правильной эксплуатации технологического оборудования.

    В настоящее время стали активно разрабатывать методы денитрификации дымовых газов.

    В первую очередь к ним относится введение NН3 в дымовые газы, содержащие NO. Этот метод наиболее эффективен при температуре дымовых газов 970 ± 50 °С.

    Недостатком данного метода является наличие в выбросах NН3. При использовании сернистых видов топлива газоходы могут забиваться бисульфатом аммония.

    Другой метод очистки основан на селективном каталитическом восстановлении NO до N2 аммиаком в присутствии катализатора (обычно TiO2 или V2O5).

    К перспективным методам очистки в настоящее время относят метод облучения аммиачно-газовой среды электронным пучком.

    Снижение выбросов СО:

    Наибольшее количество СО выбрасывается в атмосферу в литейном и химическом производстве, при производстве сажи и малеинового ангидрида. Основным методом подавления выбросов СО является организация его дожигания.



    Снижение выбросов углеводородов:

    Основными загрязнителями атмосферы углеводородами являются металлургическая, нефтехимическая и химическая промышленности.

    Организованные источники выбросов углеводородов в основном оснащаются системами мокрой очистки в скрубберах или системах дожигания, неорганизованные - системами герметизации и другими технологическими методами уменьшения выбросов.

    Основные «Парниковые газы» - газы, которые предположительно вызывают глобальный парниковый эффект

    Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются: водяной пар, углекислый газ, метан, озон, галоуглероды и оксид азота.

    Основные парниковые газы:

    Водяной пар - основной естественный парниковый газ, ответственный более, чем за 60 % эффекта. Прямое антропогенное воздействие на этот источник незначительно. В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, облака в атмосфере отражают прямой солнечный свет, тем самым, увеличивая альбедо Земли, что несколько уменьшает эффект.

    Углекислый газ: Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность организмов, деятельность человека. Антропогенными источниками является сжигание ископаемого топлива, сжигание биомассы (в т. ч. сведение лесов), некоторые промышленные процессы (например, производство цемента). Основными потребителями углекислого газа являются растения. В норме биоценоз поглощает приблизительно столько же углекислого газа, сколько и производит (в т. ч. за счет гниения биомассы).

    Метан: Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель и пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

    Озон : в земной атмосфере озон распределяется неравномерно. Большая часть озона естественного происхождения находится в нижних слоях стратосферы, где происходит множество фотохимических реакций с участием ультрафиолетового излучения. Однако, не это является главной причиной сравнительно высоких концентраций озона в этой области, так как энергии ультрафиолетового излучения в нижних слоях стратосферы не достаточно для образования больших количеств этого вещества. На концентрации озона большое влияние оказывают такие факторы, как разогрев и охлаждение (расширение и сжатие) и ветры, которые переносят озон из одного места в другое.

    Некоторые количества озона попадают в нижние слои атмосферы - тропосферу. Кроме того, озон попадает в тропосферу и в результате человеческой деятельности. Когда в атмосферу попадает угарный газ (СО), метан и другие углеводороды, вместе с выхлопами автомобилей и из других источников искусственного происхождения, то, вступая в реакцию с оксидами азота, под влиянием солнечного света, они образуют озоновый смог (фотохимический смог) тропосферы. Озоновый смог является причиной возникновения проблем со здоровьем у населения в наших городах, переполненных транспортом.

    Озон в верхней тропосфере и в нижней стратосфере является парниковым газом.

    Галоуглероды: Представляют собой класс химических соединений как антропогенного, так и природного происхождения. Они содержат углерод и один или более атомов, относящихся к галогенам (группа химических элементов) - фтору и хлору2. С точки зрения глобального потепления наибольшее значение имеют хлорофторуглероды (CFC, также известные под своей торговой маркой, фреоны), в особенности, CFC-11 и CFC-12. Несмотря на то, что они присутствуют в атмосфере в крайне незначительных количествах, эти химические соединения, помимо своего воздействия на истощение озонового слоя, являются сильными поглотителями тепла. На галоуглероды приходится около 10 процентов глобального потепления, но концентрация этих соединений в атмосфере начала сокращаться в результате международного запрета на их производство и потребление. Измерения концентрации сходных соединений, используемых в качестве замены фреонам, - гидрохлорофторуглеродов (HCFC) и гидрофторуглеродов (HFC) - показывают ее рост. Если их концентрация будет продолжать увеличиваться, эти альтернативные вещества могут оказать значительное влияние на глобальное потепление в будущем.

    Оксид азота (N2O): Как и СО2, оксид азота является естественным компонентом атмосферы. Однако интенсивное использование искусственных азотных удобрений и сжигание ископаемого топлива в двигателях внутреннего сгорания составляет большую часть антропогенных выбросов N2O. На него приходится около 6 процентов глобального потепления.

    3.2.9. Мероприятия по снижению экологической нагрузки
    на воздушный бассейн

    Общая структура мероприятий по предотвращению выбросов в окружающую среду на опасных предприятиях представлена на рис. 3.14. Благодаря такому сочетанию представленных на схеме мер достигается снижение отрицательного воздействия вредных веществ на окружающую среду. Эффективность собственно технологических мероприятий по снижению выбросов в окружающую среду определяется экологической чистотой процессов. Экологически

    чистым процессом является такое производство или совокупность производств, в результате практической деятельности которых негативное воздействие на окружающую среду не происходит или сводится к минимуму. Такие малоотходные технологические системы обеспечивают максимальное и комплексное использование сырья и энергии.

    Для предприятий нефтепереработки и нефтехимии, в общем случае, это означает: модернизацию технологического оборудования; контроль за герметизацией оборудования и соблюдением технологического режима; разработку аппаратуры, предотвращающей выбросы в атмосферу либо ограничивающей их до допускаемых уровней; улучшение качества моторных и котельных топлив; очистку отходящих газов; совершенствование и сокращение факельной системы и т.д.

    Целесообразность и направленность технологических и организационных мероприятий по предотвращению выбросов и улучшению экологической обстановки определяется результатами наблюдений за средой и выбросами в нее. Совершенство системы наблюдений обеспечивает эффективность применения технологических мероприятий к тем или иным производствам.

    Таким образом, развитая система мониторинга окружающей среды предприятия дает возможность не только получать достаточно полную информацию о состоянии окружающей среды (МС) и источников выбросов (MB) в режиме реального времени, но и обеспечивает управление окружающей средой за счет целенаправленного и эффективного использования организационных и технологических мероприятий.

    К мероприятиям по снижению выбросов вредных веществ, относят:

    • - совершенствование технологических процессов и внедрение малоотходных и безотходных технологий;
    • - изменение состава и улучшение качества используемых ресурсов;
    • - комплексное использование сырья и снижение потребления ресурсов, производство которых связано с загрязнением окружающей среды;
    • - изменение состава и улучшение качества выпускаемой продукции (неэтилированные бензины, малосернистые топлива и т.д.);
    • - очистку сбрасываемых промышленных газов;

    К мероприятиям по снижению степени распространения вредных веществ, относят: нейтрализацию, консервацию, захоронение и утилизацию выбросов. Следует отметить, что строительство

    высоких и сверхвысоких труб не уменьшает выброс вредных веществ в атмосферу и степень их распространения, а обеспечивает снижение приземной концентрации вредных примесей.

    При рассмотрении технологических мероприятий по снижению выбросов вредных веществ их принято разбивать на группы в соответствии с тем, выбросы каких веществ они предотвращают.

    Диоксид серы и сероводород. Снижение выбросов SO 2 и H 2 S. Для снижения выбросов диоксида серы с дымовыми газами основными методами защиты воздушного бассейна являются:

    • - усреднение состава перерабатываемых нефтей и, соответственно, остаточных фракций, используемых в качестве нефтезаводского топлива;
    • - увеличение доли газа в топливе;
    • - очистка топливных газов.

    Известные методы сероочистки составляют две основные группы:

    • - мокрые способы (с использование абсорбентов, суспензий);
    • - сухие способы (хемосорбция, адсорбция, катализ).

    Наиболее распространенным способом мокрой очистки промышленных газов от диоксида серы является использование растворов и суспензий соединений щелочных, шелочно-земельных металлов, алюминия, органических веществ (сульфит-бисульфитные методы). При использовании 9,5-10% раствора гидроксида натрия для повышения поглотительной способности добавляют 0,05-0,08% перманганата калия. В случае очистки газов с помощью растворов соды происходит накопление тиосульфата натрия. Чтобы этого избежать, в раствор добавляют 1-3% органических соединений (спиртов, альдегидов). В таком растворе скорость образования тиосульфата в 8-9 раз ниже.

    Опробован промышленный абсорбционный метод очистки газов от диоксида серы с использованием сульфита натрия. Охлажденный газ, очищенный от твердых частиц, направляют в абсорбер, орошаемый раствором сульфита натрия. Отработанный раствор регенерируют в выпарном аппарате. При этом выделяемый концентрированный диоксид серы направляют на получение серы или серной кислоты, а сухой остаток растворяют в воде и направляют в абсорбер для повторного использования. Если вместо сульфита натрия использовать сульфит калия, то образующийся в результате очистки газа сульфат калия можно использовать в качестве удобрения.

    Большое количество работ посвящено изучению очистки газов

    от диоксида серы с использованием растворов и суспензии оснований и солей щелочно-земельных элементов.

    Для очистки газов от SO 2 предлагается использовать гидроксид магния, известковую суспензию (20-30% СаС1 2). Полученный гипс можно использовать в качестве стройматериалов. Степень очистки - до 98%. Предложена очистка дымовых газов с использованием суспензии СаСО 3 . Очистку ведут в колонном аппарате высотой 36 м и диаметром 14 м. Степень очистки 90%. Фактором, определяющим надежную работу колонны, является рН суспензии. Наибольшая эффективность достигается при рН суспензии 3,5-4,5. Для поддержания заданного значения рН вводят в требуемом количестве растворы янтарной, уксусной, молочной, сульфопропионовой кислот.

    В качестве компонентов суспензии используют также СаО + СаСО 3 , СаО + Са(ОН) 2 , СаО + MgSO 4 . С целью повышения эффективности известковых способов очистки газов от диоксида серы в абсорбент добавляют различные органические соединения, например, дикарбоновые кислоты с величинами констант диссоциации между значениями констант сернистой и угольной кислот. При этом поглощающая способность суспензии в отношении SO 2 повышается в 7-30 раз.

    Очистка отходящих газов от кислых примесей возможна с использованием аммиачного метода. В газовую смесь впрыскивают аммиак, который, взаимодействуя г. кислыми веществами, образует соединения аммония. Собранная на электрофильтре твердая фаза направляется на регенерацию аммиака, благодаря чему расход аммиака в процессе невелик.

    Предложен цитратный способ обессеривания дымовых газов, содержащих до 30% масс, диоксида серы. Очищаемый газ контактирует при 15-80°С с водным раствором моноди или трикалий-цитрата или с их смесью. Десорбцию диоксида серы осуществляют нагреванием раствора. Газ направляют на получение серной кислоты, элементной серы или жидкого диоксида серы. Для повышения эффективности цитратного способа в раствор добавляют лимонную кислоту.

    Имеется ряд эффективных способов очистки отходящих газов с использованием отходов (шламов) различных производств. Например, очистку газов от диоксида серы ведут обработкой газового потока суспензией красного шлама (отход процесса Байера), состоящего из окислов кремния, железа, титана, алюминия и натрия. Степень очистки газа от диоксида серы ≥ 90%.

    Запатентован способ и состав абсорбентов для удаления диоксида

    серы из дымовых газов с использованием раствора сульфата железа(III) и сульфата алюминия.

    Сероводород удаляют из газа в контактной зоне водным раствором соединений кальция и натрия при рН = 7-10. Абсорбционный раствор содержит хелатные соединения поливалентных металлов (каталитические методы очистки в жидкой фазе), например, железа (катализатор окисления). В зоне окисления образуется элементная сера. Абсорбент подвергают регенерации и используют повторно.

    Абсорбцию сероводорода проводят также абсорбентом, содержащим гидроксид железа(III) с последующей регенерацией насыщенного абсорбента воздухом с образованием смеси элементной серы и гидроксида железа(III) с последующим ее разделением. Для снижения расхода реагентов смесь элементной серы и гидроксида железа(III) обрабатывают углеводородным конденсатом при 110-120°С. Образующийся углеводородный раствор серы отделяют от Fe(OH)3. Fe(OH)3 подают на первоначальную стадию очистки, а из углеводородного раствора охлаждением выделяют элементную серу, после чего углеводородный конденсат возвращают в цикл.

    Очистку газовых потоков, содержащих сероводород, осуществляют обработкой раствором железа(III). При этом образуется элементная сера. Образующийся раствор сульфата железа(II) регенерируют с помощью кислородфиксирующих бактерий.

    Описан процесс удаления из дымовых газов сероводорода в скруббере, заполненном абсорбентом-катализатором, содержащим карбонат натрия, пятиокись ванадия и органические азотсодержащие соединения. Регенерацию абсорбционного раствора осуществляют путем окисления V +4 до V +5 . При этом сероводород количественно переходит в элементную серу, которую выделяют фильтрованием или центрифугированием. После плавления получают серу с чистотой 99,8%.

    Значительное количество работ посвящено очистке газов с использованием органических сорбентов. Для очистки газов от сероводорода предложен поглотительный растворитель, содержащий органическое основание, диметилформамид и фталоцианин кобальта.

    Запатентован способ удаления диоксида серы из газовых потоков контактированием с оксоалканами. Образующийся аддукт с диоксидом серы гидролизуют с образованием серной кислоты и исходного абсорбента, который возвращают в цикл.

    Предложен процесс сероочистки дымовых газов с повышенным содержанием углекислого газа с использованием таких растворителей,

    как метанол, N-метилпирролидон или диметиловый эфир полиэтиленгликоля. На первой стадии очистки идет поглощение сероводорода и части углекислого газа. На второй стадии ведут доочистку газа от СО 2 и H 2 S. Растворитель регенерируют повышением температуры насыщенного примесями раствора. Из газового потока, обогащенного сероводородом, после регенерации по методу Клауса получают элементную серу.

    Большинство сухих хемосорбционных способов очистки газов от кислых компонентов основано на химическом взаимодействии вредных примесей с основаниями, окислами и солями щелочных и щелочноземельных элементов. Для удаления вредных примесей из газов с одновременной осушкой используют смесь гидрокарбонатов натрия, калия, аммония и магния, нанесенную на диоксид кремния или бентонит.

    Очистку дымовых газов проводят с помощью порошкообразных гидрокарбоната натрия, карбоната кальция, оксида кальция, гидроксида кальция, которые вводят распылением непосредственно в камеру сгорания или трубопровод дымовых газов. Степень очистки от диоксида серы достигает 85%. Твердые частички отделяются на фильтрах, циклонах вместе с пылью.

    В качестве носителя для поглотителя кислых газов используют древесные стружки, пропитанные раствором щелочи и силикатом натрия в количестве 0,13-0,78%.

    Для более полной очистки от диоксида серы предварительно охлажденные до 100°С дымовые газы пропускают через слои гидроксида натрия, соды, известняка, активированного угля и пористого стекла. Степень очистки от диоксида серы составляет 90%.

    Предложен способ очистки от диоксида серы и других кислых газов с помощью хемосорбента, приготовленного на основе гидроксида магния. Смесь гидроокиси магния и связующего (бентонит, каолинит, силикат натрия, диоксид кремния) гранулируют и прокаливают при 350-800°С. Содержание связующего 3-50% в расчете на гидроксид магния. Предложен способ приготовления хемосорбента на основе оксида бария. В качестве носителя используют техническую полуторную окись алюминия с 10% диоксида кремния.

    Очищать газы от сероводорода и диоксида серы возможно контактированием газа с хемосорбентом в псевдоожиженном слое. Хемосорбент получают смешением 10-70% цемента с известняком или доломитом (90-30%) и водой с последующим затвердеванием смеси. Полученный продукт дробят и используют фракцию 0,7-2 мм.

    Разработаны эффективные сухие способы очистки газов от вредных примесей с использованием органических нетканых материалов,

    являющихся сильными основаниями (акриловые ткани, волокнистые ткани, изготовленные из ароматического моновинилового полимера).

    В адсорбционных способах очистки дымовых газов преимуществом цеолитных адсорбентов по сравнению с аморфными является их высокая адсорбционная емкость даже в случае очень малых концентраций сернистых соединений в газах, что позволяет осуществлять их глубокую очистку. Из синтетических цеолитов общего назначения (NaA, CaA, NaX) лучшими свойствами по отношению к сернистым соединениям обладает цеолит СаА.

    Возможно использование специальным образом приготовленной волокнистой глины, содержащей до 50% полуторной окиси алюминия и 20-25% меди, а также поглотители, приготовленные пропиткой γ-А1 2 О 3 соединениями марганца или железа с последующей прокалкой.

    Чисто адсорбционные установки используют для концентрирования кислых газов, в сочетании с каталитическими установками - с целью получения серной кислоты.

    Различные методы уменьшения выбросов диоксида серы разработаны применительно к установкам каталитического крекинга. При переработке сырья с содержанием серы 1,65% концентрация диоксида серы в отходящих газах регенерации катализатора достигает до 2000 мл/м 3 . Уменьшение выбросов диоксида серы на установках каталитического крекинга может быть достигнуто увеличением подачи пара для отпарки катализатора, транспортируемого из реактора в регенератор. Однако для уменьшения выбросов на 80% расход пара при крекинге на природных алюмосиликатах должен быть увеличен примерно в 10 раз. При крекинге на цеолит-содержащих катализаторах достигаемое снижение выбросов даже при таком расходе пара составляет 20%.

    Одним из методов снижения выбросов серосодержащих газов является гидрообессеривание сырья. Развивающимся направлением снижения выбросов диоксида серы является применение катализаторов, содержащих оксиды металлов и связывающих серу в сульфаты. Последние вместе с катализатором переносятся в реактор, где восстанавливаются до сероводорода. Выход последнего повышается примерно на 10%, что, как правило, не требует изменения схемы газофракционирования и аппаратуры извлечения сероводорода. Различают два вида катализаторов: модифицированные - бифункциональные ("перемешивающие SO x ") и добавки к основному катализатору ("восстанавливающие SO x "). Так как при связывании сернистых соединений предпочтительно

    наличие серного ангидрида, то при осуществлении процесса подбирают соответствующие режимы: полный дожиг сернистых соединений в регенераторе, избыток кислорода в газах выжига кокса, ограниченный диапазон температур регенерации, эффективную отпарку, ограничения на содержание в сырье никеля, ванадия, кремния.

    Показано, что применение катализатора ПС-17 для связывания оксидов серы в сочетании с катализатором КО-9М для окисления оксида углерода обеспечивает значительное сокращение выбросов в атмосферу, и, следовательно, улучшение экологической обстановки. Кроме того, из сырья с 0,4-1,5% серы благодаря увеличению содержания сероводорода в газах крекинга можно дополнительно получить 500-1500 т/год элементной серы.

    Снижение выбросов H2S на установках производства элементной серы, (процесс Клауса). Современные НПЗ становятся крупными производителями серы. Это связано с вовлечением в переработку тяжелых нефтей и в большей степени с ужесточением экологических требований по ограничению содержания серы в нефтепродуктах и серосодержащих газовых выбросах в атмосферу.

    За пять лет доля серы в перерабатываемой нефти увеличилась (согласно оценке Европейской организации по охране окружающей среды) на 23%. Например, доля серы в перерабатываемых на Московском НПЗ западно-сибирских и татарских нефтях (70% от общего объема перерабатываемых нефтей) за последние 10 лет возросла на 27%.

    Организация и увеличение мощностей производства серы (процесс Клауса) или производство серной кислоты на базе утилизации ее из серосодержащих выбросов значительно увеличивают рентабельность как за счет реализации товарной серы, так и за счет сокращения штрафных санкций со стороны природоохранных органов. По оценкам порядка 90-95% мировой выработки серы приходится на процесс Клауса. В настоящее время ни один из новых методов получения серы не доведен до такой степени совершенства, как классический процесс Клауса. На большинстве предприятий при строительстве новых установок ориентируются на метод Клауса (рис. 3.15).

    Сырьем для производства серы методом Клауса служит сероводород, образующийся в результате переработки нефти и очистки нефтепродуктов. Сероводород накапливается главным образом во фракции топливного газа. По химическому составу сернистые соединения нефти очень разнообразны. В нефтях встречается как


    растворенная, так и элементная сера в коллоидном состоянии, сероводород, меркаптаны (тиолы, тиоспирты), сульфиды (тио-эфиры) и полисульфиды, а также смешанные серу- и кислородсодержащие соединения - сульфоны, сульфоксиды и сульфоновые кислоты.

    Очистку топливного и других сероводородсодержащих газов проводят обычно с помощью абсорбции аминами: моноэтаноламином (МЭА), диэтаноламином (ДЭА), метилдиэтаноламинами (МДЭА). Очистка углеводородного газа от сероводорода осуществляется взаимодействием с 15% раствором МЭА (коррозионные ограничения).

    Извлекаемый таким образом сероводород является целевым сырьем для производства серы. Более эффективным способом очистки газов от сероводорода, по сравнению с МЭА-очисткой, является очистка водным раствором МДЭА. Данный процесс имеет следующие преимущества:

    • - высокая селективность извлечения сероводорода, что увеличивает концентрацию H 2 S в потоке, поступающем на процесс Клауса. Это приводит к повышению эффективности и увеличению экологической характеристики последнего;
    • - меньшие затраты тепла на стадии регенерации рабочего раствора;
    • - малые потери растворителя вследствие его высокой термохимической устойчивости и низкого давления паров;
    • - низкая коррозионная активность МДЭА-растворов.

    В отличие от процесса МЭА-очистки, где, исходя из условий коррозии, используется 15% масс, растворы, концентрация МДЭА в рабочих растворах составляет 30-35% масс. Соответственно, уменьшается количество циркулирующего раствора и его теплоемкость, что снижает затраты энергии на циркуляцию и регенерацию абсорбента. Другим преимуществом МДЭА является более низкая (примерно на 20%) теплота абсорбции кислых газов по сравнению с МЭА. Это также приводит к некоторому снижению расхода тепла при регенерации раствора.

    Присутствие аммиака в кислом газе, поступающем на установку, ведет к возникновению следующих вторичных реакций:

    • - образование (за счет реакций с серой) отложений твердых аммонийных комплексов на холодных участках установки, если аммиак или его часть проходит через печь, не сгорая;
    • - возможное образование диоксида азота, катализирующего в присутствии кислорода окисление диоксида серы в триоксид. Последний при взаимодействии с водой образует серную кислоту, которая усиливает сульфатирование катализатора (оксида алюминия), а также способствует коррозии оборудования. Аммиак из сырьевого потока необходимо разрушать на стадии термического сжигания.

    Наибольшее распространение в процессе Клауса получили катализаторы на основе γ-А1 2 О 3 . Продолжительность эксплуатации этих катализаторов на установках Клауса составляет от 3 до 5 лет. К основным факторам, вызывающим дезактивацию катализатора следует отнести:

    • - снижение удельной поверхности, кристаллические изменения (за счет гидротермической и термической деструкции);
    • - снижение числа активных центров за счет хемосорбции SO 2 ;
    • - сульфатирование поверхности катализатора;
    • - изменение пористости катализатора за счет отложения серы, кокса, минеральных солей.

    На основании исследований установлено, что активность катализатора можно выразить показателями: удельной поверхностью и содержанием в нем сульфата. Фирмой "Эльф-Акитен" разработан модифицированный сульфатом железа алюмооксидный катализатор торговой марки AM. Катализатор обладает способностью конвертировать следы кислорода и триоксида серы, присутствующие в газах, в результате чего предотвращаются реакции сульфатации катализатора. Катализатор AM используется в качестве защитного лобового слоя. Особенно целесообразно его использовать в последнем каталитическом конверторе, где кинетика реакции Клауса и условия для авторегенерации оксида алюминия крайне неблагоприятны. Срок службы основного катализатора при этом увеличивается.

    Фирма "Рон-Пуленк" совместно с фирмой "Эльф-Акитен" разработали катализатор на основе диоксида титана - CRS-31. Катализатор высокоактивен в реакциях окисления сероводорода диоксидом серы и гидролиза COS и CS 2:

    COS + Н 2 О → H 2 S + CO 2 (3.18)

    CS 2 + H 2 O → 2H 2 S + CO 2 (3.19)

    и стоек к сульфатированию, что делает его особенно стабильным.

    С учетом вышеизложенного фирма "Прокатализ" совместно с фирмой "Рон-Пуленк" разработала новый катализатор для процесса Клауса CR-3S на основе оксида алюминия с размерами сферических частиц 3,1-6,3 мм, соотношением V 1 /V 0,1 > 0,7 и содержанием натрия 1700-2300 Na 2 O/кг. Преимущество физических

    и химических свойств катализатора CR-3S особенно проявляется в случае наиболее сильных ограничений, связанных с сульфатированием.

    Фирмой "Компримо" в сотрудничестве с другими предприятиями разработан процесс - Суперклаус. В новом процессе модифицирована система управления и введена стадия прямого селективного окисления H 2 S, отходящего с конечного конвертора, до серы в присутствии специального катализатора. Степень извлечения серы достигает 99-99,5%. К основным преимуществам процесса Суперклаус следует отнести также отсутствие сточных вод, увеличение продолжительности активности и срока службы катализаторов в результате предотвращения сульфатации при работе в среде, обогащенной H 2 S.

    Широко применяемым методом обезвреживания хвостовых газов на установках производства элементной серы является термический дожиг. Эффективность очистки от H 2 S данным методом достигает 94,6%, а концентрация вредных веществ в хвостовых газах после дожига составляет: H 2 S - 0,42 г/м 3 , SO 2 - 1,36 г/м 3 . Важным направлением снижения выбросов диоксида серы являются:

    • - использование малосернистых остаточных топлив;
    • - увеличение доли газа в нефтезаводском топливе и очистка топливных газов (табл. 3.18).

    Изменение структуры потребления топлива данной системой

    Таблица 3.18

    Динамика расхода топлива
    в печах НПЗ топливно-нефтехимического профиля

    Процессы Год
    1-й 2-й 3-й

    указывает на то, что идет сокращение применения в качестве топлива мазута прямой гонки. Для компонента жидкого топлива используется очищенный газойль каталитического крекинга, содержащий меньше серы. Было показано, что сокращение потребления жидкого топлива привело к уменьшению вредных выбросов, в частности SO 2 (рис. 3.16).

    Задача снижения выбросов SO 2 решается путем реконструкции и модернизации топливных систем, в т.ч.: системы энергетических паровых котлов и системы обеспечения работы технологических печей. Следует отметить, что реконструкция топливных систем позволяет снизить выбросы не только SO 2 , но и окислов азота, твердых веществ, окиси углерода.

    Таким образом, комплексный подход к проблеме снижения выбросов сернистых соединений позволяет значительно снизить выбросы данного вида загрязнителей в атмосферу даже при увеличении мощностей предприятий и вводе в эксплуатацию новых производств.

    Оксиды азота. Наиболее простым и экономичным методом снижения выбросов NO x является совершенствование процесса сжигания топлива. Исходя из этого, основные мероприятия по снижению выбросов окислов азота должны быть направлены на совершенствование процесса сжигания топлив.

    Использование акустических ствольных горелок в печи П-3 установок первичной переработки нефти приводит к сокращению


    Рис. 3.17. Динамика изменения среднегодовых значений концентрации диоксида азота в воздухе промышленной зоны: 1 - ПДК c.c. ; 2 - аппроксимация

    расхода топлива на 0,063 кг/т сырья и существенному снижению выброса дымовых газов.

    Результатом модернизации систем сгорания топлива и сокращения количества вредных выбросов с дымовыми газами является снижение содержания диоксида азота в атмосферном воздухе промышленной зоны предприятия, где в наименьшей степени ощущается влияние внешних источников выбросов диоксида азота (рис. 3.17).

    Оксид углерода(И). К мероприятиям, проводимым по снижению выбросов оксида углерода(П), относятся:

    • - каталитический дожиг отходящих газов;
    • - утилизация больших количеств газа в котлах-утилизаторах;
    • - дожиг отходящих газов в регенераторе (установка Г-43-107) на базе применения промотирующих добавок к основному катализатору процесса крекинга.

    С ростом доли тяжелого и остаточного сырья в общем объеме сырья каталитического крекинга, а также с ужесточением экологических требований актуальность проблемы сокращения вредных выбросов в атмосферу на этих установках возрастает. Одним из наиболее рациональных и перспективных способов совершенствования процесса регенерации является регулируемое окисление СО и связывание SO 2 в объеме регенератора с помощью специальных катализаторов.

    Наиболее эффективный подход к сокращению выбросов оксида

    углерода - предотвращение его образования. С этой целью проектируются форсунки, обеспечивающие хорошее смешение с воздухом, внедряются системы контроля за полнотой сгорания топлива и другие мероприятия. К сожалению, меры, направленные на подавление образования оксида углерода, приводят к повышению концентрации оксидов азота и наоборот. Поэтому каждый тип устройств для сжигания следует оценивать по выбросам отдельных загрязняющих веществ.

    При выделении больших количеств оксида углерода (например, при выжиге кокса на регенераторных установках) его собирают и сжигают в котлах-утилизаторах. При низких концентрациях СО в выбросе требуется применять устройства для каталитического дожигания. Оксид углерода можно избирательно отделить от других газов посредством промывки специальными растворами, например, аммиачным раствором формиата меди.

    Снижение выбросов оксида углерода на установках каталитического крекинга достигается дожигом отходящих газов, осуществлением полного дожига непосредственно в регенераторе на базе применения промотирующих добавок к основному катализатору (благородный металл на оксиде алюминия). Концентрация СО в отходящих газах снижается при этом от 10 до 0,1%.

    Дожиг является также основным методом нейтрализации для других источников выбросов оксида углерода и других вредных углеводородов с применением новых, более эффективных катализаторов дожига. Так, разработан гранулированный катализатор НТК-11 для низкотемпературной конверсии оксида углерода с водяным паром в производствах аммиака, водорода, синтеза метанола и других процессах.

    Проведены испытания установки термокаталитического дожига газов окисления битумного производства. Ранее применительно к катализатору НИИОГАЗ-10Д было показано, что при температуре в слое катализатора 500-560°С достигаются следующие пределы окисления примесей: 72-87% для С-Н и СО; 91-92,5% для H 2 S; 73-74% для RSH. На основе исследований разработан технологический регламент процесса с использованием термической и каталитической ступеней дожига. Термический процесс при температуре 400-450°С протекает в циклонной топке со степенью окисления: 75-90% H 2 S; 23-71% RSH и 56-83% СО + (СН). Каталитическое окисление проводится при температуре 500-550°С; эффективность обезвреживания оксида углерода и органических продуктов может достигать 99,8%.

    Углеводороды. Можно выделить основные способы снижения уровня загрязнения атмосферы при хранении нефтей и нефтепродуктов:

    • - обеспечение поступлений на завод сырой нефти с давлением насыщенных паров и содержанием минеральных солей, отвечающих ГОСТу;
    • - обеспечение стабилизации вырабатываемых на заводах бензиновых компонентов и других легких фракций, направляемых для хранения в резервуары. Причинами неудовлетворительной работы системы стабилизации бензиновых компонентов могут быть: низкое давление в стабилизаторах и недостаточное число фракционирующих тарелок, малый диаметр аппарата, низкая температура нагрева продукта, нарушения технологического режима работы и т.п.;
    • - обеспечение охлаждения светлых продуктов, направляемых в резервуары для хранения, до минимально возможной температуры, для чего необходимо сооружать дополнительные концевые холодильники. Исследования показали, что при снижении на 10-15°С температуры охлаждения светлых продуктов перед поступлением их в резервуары для хранения потери от "дыханий" резервуаров уменьшаются в 1,5-2,5 раза;
    • - замена резервуаров с шатровой крышей на резервуары с плавающими крышами, понтонами или резервуары, работающие при избыточном давлении. В резервуаре с плавающей крышей нет газового пространства над продуктом, т.е. исключены потери от "дыханий". Резервуары подобных конструкций могут быть большой емкости, что дает значительную экономию капитальных затрат на их сооружение, а также дополнительно сокращаются потери продукта при малых "дыханиях";
    • - оборудование действующих резервуарных парков специальными системами улавливания испаряющихся из резервуаров паров нефтепродуктов: адсорбцией паров на активированных углях с циклической вакуумной регенерацией последних и поглощением десорбированных паров потоком бензина; адсорбцией паров бензином при пониженных температурах; сжиганием выделяющихся паров.

    Главным узлом, имеющим открытую связь установки вакуумной перегонки с окружающей средой, является конденсационно-вакуумная система, через которую выбрасываются загрязнители. Поэтому от выбора схемы и устройства конденсационно-вакуумсоздающих систем будет в значительной степени зависеть не только уровень энергозатрат на создание вакуума, а также уровень безвозвратных потерь углеводородного сырья и выброс вредных веществ в окружающую среду.

    Нефтепродукты, поступающие с оборотной водой, в основном испаряются в воздух. Например, в градирнях НПЗ удаляется с воздухом через открытые вентиляторы 2500 т/год углеводородов. Для снижения выбросов из очистных сооружений необходимо уменьшить расход сточных вод за счет использования системы оборотного водоснабжения и аппаратов воздушного охлаждения, а также заменить нефтеловушки открытого типа закрытыми, полностью или частично герметизированными.

    Резервуары для нефти и бензинов, имеющих низкую температуру начала кипения, оборудуют "плавающими" крышами, снижающими потери с парами нефтепродуктов на 90% по сравнению с резервуарами обычного типа.

    Значительный эффект дает модернизация старых установок завода и выведение из эксплуатации морально и физически изношенных установок. Названные мероприятия позволили значительно снизить общий выброс углеводородов, например, на Московском НПЗ (рис. 3.18).

    Новые технологические установки с малыми удельными потерями, системой утилизации факельного газа, например, установки для выпуска высокооктанового бензина и очистки дизельных топлив от серы, а также ввод в действие нового производства полипропилена позволили сократить выбросы вредных веществ в атмосферу в 10 раз.

    Твердые вещества. С химическими методами переработки углеводородного сырья, особенно каталитическими, помимо вышеуказанных

    загрязнителей атмосферы, связан и выброс пылеобразующих веществ.

    Выбор системы пылеочистки должен базироваться на комплексном рассмотрении всего технологического процесса. Предопределенные технологией каталитического крекинга методы снижения расхода катализатора путем его извлечения из контактных газов в аппаратах технологической пылеочистки и принудительного возврата в реакционную систему устанавливают взаимно однозначное соответствие между фракционным составом катализатора в системе, скоростью его уноса из псевдосжиженного слоя, интенсивностью истирания и весовой скоростью потерь. На балансовые показатели процесса каталитического крекинга и систем пылеулавливания значительное влияние оказывают свойства катализатора. Поэтому при расчете систем пылеулавливания необходимо учитывать различия в физико-механических характеристиках рабочих и поступающих на установку катализаторов.

    Уровень выбросов вредных веществ в окружающую среду в значительной степени зависит от параметров технологических установок. Так, например, при переработке дистиллятного сырья каталитическим крекингом поддержание высокой средневзвешенной активности катализатора достигается повышенной кратностью его циркуляции. Но увеличение кратности циркуляции ведет к более интенсивному износу катализатора и выносу большого количества катализаторной пыли в атмосферу.

    На современных установках каталитического крекинга обычно применяют двухступенчатые системы циклонов в регенераторе и одноступенчатые - в реакторе. При этом ограничения технологии (например, максимальное содержание легких фракций лимитируется величиной механических примесей в тяжелых продуктах крекинга) требуют вполне определенной эффективности каталитических систем и, естественно, предопределяют уровень потерь катализатора в атмосферу. Однако, если этот уровень превышает нормы предельно допустимых выбросов или допустимую концентрацию катализаторной пыли в приземном слое, то возникает необходимость установки дополнительных выносных систем очистки газов. При этом выносные (дополнительные) системы пылеулавливания могут иметь различные схемы, которые должны отвечать следующим требованиям:

    Наибольшее применение нашли выносные схемы, включающие одновременно групповые или батарейные циклоны, электрофильтр, сепараторы тонкой очистки для подготовки газов и рекуперации их энергии в турбинах. При этом возможны различные модификации схем тонкой санитарной очистки, сущность которых заключается в повышении эффективности сепарации путем откачки части газа с уловленной пылью и очистки в отдельном сепараторе газов отсоса перед выбросом их в атмосферу или применение мокрого скруббера взамен мультициклона.

    Повышение эффективности работы факельной системы.

    Сокращение объемов газов, сбрасываемых на факел, и возврат их в производство - одна из актуальных задач нефтепереработки. Опыт показывает, что сброс газов при пуске установок, в аварийных ситуациях и нарушениях технологических режимов пока неизбежен. При этом состав и объемы газов могут сильно различаться. Факельная установка всегда должна быть готова к приему и обезвреживанию аварийных и периодических сбросов, поэтому она снабжена пилотными горелками. Постоянные сбросы должны собираться на установке утилизации и возвращаться на переработку или использоваться в качестве топливного газа.

    По месту расположения горелок факельные установки разделяют на высотные (надземные) и наземные. В зависимости от высоты факельной трубы надземные установки принято подразделять на средние (4-25 м) и высокие (> 25 м). В некоторых случаях высота факельной трубы составляет 80-120 м. Выбор высоты и расположения факела определяется топографией производственной площадки, характером близлежащих технологических установок, населенных пунктов и др. С целью снижения вредного воздействия высокие факелы располагают обычно в подветренной части производственной площади.

    Основными достоинствами факельных установок являются:

    • - удаленность от пожароопасных объектов (10-15 м);
    • - возможность обезвреживания значительных объемов сбрасываемых газов (более 400 т/ч).

    Эксплуатационные показатели факельных систем должны характеризоваться стабильностью пламени, полнотой сгорания газа, уровнем шума, надежностью воспламенения, эффективностью управления при изменении объемов или состава сгорающего газа, бездымностью работы.

    Применявшиеся ранее факельные системы утилизации газов, например на Московском НПЗ (рис. 3.19а), не отвечали современным

    экологическим требованиям по следующим причинам: отсутствие независимых источников подачи и потребления газа, систем с различным давлением и достаточно емкого буфера для сглаживания давления; регулировка производительности установки утилизации вручную; малая производительность установок.

    Модернизация предприятия с вводом новых установок неизбежно приводит к изменению параметров и режимов сжигания сбрасываемых газов (паров). Поэтому были проведены проектные проработки для определения направления реконструкции факельной установки с целью улучшения экологической обстановки предприятия. Результаты исследований на предприятиях топливно-нефтехимического профиля показывают, что не все количество сбрасываемого газа сгорает на наземном факеле. Строительство наземного факела не дает преимуществ с экономической и с экологической точек зрения. Для обеспечения стабильной работы наземного факела требуется увеличить расход топливного газа приблизительно на 3,2 т/ч, что приведет к увеличению выброса вредных веществ. Это связано с низкой высотой наземной факельной установки и малой скоростью выхода продуктов сгорания.

    Спроектирована высотная факельная установка, которая состоит из гидрозатвора, факельного ствола, газового затвора для сокращения расхода продувочного (топливного) газа, факельного оголовка, дежурных горелок и системы зажигания (3.196). Все эти элементы обеспечивают стабильную (без погасания) работу факельной установки в широких технологических режимах. Наличие устройств для распыления пара обеспечивает полноту сгорания углеводородов, содержащихся в сбросном газе. Специальные факельные горелки обеспечивают автономное сжигание сероводорода независимо от расхода углеводородных газов. Предусмотрены резервные стволы с оголовками как для сероводородного, так и для углеводородного сбросов. Это позволяет обеспечить бесперебойную работу факельной установки.

    Факельная установка рассчитана на достаточно полное сжигание сбросных газов в широком интервале их расходов. В частности, для сжигания относительно небольших сбросов газов, содержащих сероводород, предусмотрена отдельная факельная горелка, а для бездымного сжигания углеводородных газов подведен пар, количество которого обеспечит качественное сжигание до 40 т/ч углеводородов.

    Сравнительные характеристики ранее действующей и новой факельных установок приведены в табл. 3.19. Конструкция, размеры новой факельной установки и системы ее привязки позволяют

    Таблица 3.19

    Сравнительные характеристики факельных установок

    Высота, м 40 99 99
    Диаметр ствола, м 0,6 1,4 0,5
    250 400 9
    Молекулярная масса (средняя) 17,71 17,71 32
    Плотность, кг/м 3 0,79 0,79 1,29
    Температура сборного газа, °С 70 70 112
    Давление МПа (изб.) 0,015/0,05 0,04 0,09
    Скорость сброса, м/с 122,2 61 8,9
    Расход продувочного (топливного) газа, м 3 /ч 1630 - -
    Расход продувочного газа (азота), м 3 /ч - 60,2 8,0
    Количество пара, т/ч Около 5 12 -
    Количество бездымно сжигаемого газа, т/ч 15 40 -
    Степень превращения, % Не более 90 Не менее 90 Не менее 90
    Длина пламени (максимальная), м 8 40 25

    исключить строительство дополнительной факельной установки для производства полипропилена.

    Ввиду сложности экспериментального определения количества вредных веществ, образующихся при сжигании сбросов на факельной установке, использовались расчетные методы определения эмиссии от старого и нового факелов при различных вариантах сжигания газов (табл. 3.20).

    Как видно из представленных в табл. 3.20 данных, ввод новой факельной установки приводит к снижению выбросов вредных веществ на два порядка по сравнению со старой факельной установкой. Такое снижение обеспечивается за счет замены продувки углеводородным газом на продувку азотом.

    При замене углеводородного газа на азот не снижается количество вредных веществ, образующихся при максимальном аварийном сбросе, но при работе новой факельной установки в дежурном режиме выброс вредных веществ с факельной установки уменьшается на 300 т/год.

    Отметим, что длина пламени на новом факеле в два раза больше, чем на старом, и составляет ∼140 м, что значительно улучшает рассеяние вредных веществ в атмосфере.

    Таблица 3.20

    Параметры выбросов загрязняющих веществ в атмосферу

    Максимальный аварийный выброс
    Новый факел (основной) 99 1,4 77,14 110,4 1000 Углеводороды 0,0312
    Диоксид азота 0,187
    Оксид углерода 1,250
    Диоксид серы 0,063
    Новый факел (вспомогательный) 99 0,5 11,84 2,32 1000 Диоксид серы 0,388
    Диоксид азота 0,00675
    Старый факел 40 0,6 389 110,4 1000 Углеводороды 0,0326
    Диоксид азота 0,194
    Оксид углерода 1,250
    Диоксид серы 0,102
    Постоянное горение
    Новый факел (дежурные горелки) 99 0,05 2,8 0,0055 1000 Углеводороды 0,06192
    Диоксид азота 0,40248
    Оксид углерода 2,69352
    Старый факел (продувочный газ) 40 0,6 1,74 0,4906 1000 Углеводороды 6,00624
    Диоксид азота 35,9136
    Оксид углерода 232,2
    Диоксид серы 26,0064

    * максимальный аварийный сброс рассчитан по максимальному сбросу установки ЭЛОУ-АВТ-6.

    По результатам расчетов рассеяния вредных веществ, образующихся при факельном сжигании сбросных газов, рассчитаны максимальные приземные концентрации на границе санитарно-защитной зоны по предельным углеводородам, диоксиду азота, оксиду углерода, диоксиду серы (табл. 3.21).

    Из табл. 3.21 видно, что при постоянном горении концентрации вредных веществ при сжигании на новом факеле уменьшаются в 115-125 раз, а в режиме максимального аварийного сброса - в 2-2,5 раза. При аварийном сбросе концентрация диоксида серы несколько возрастает. Это объясняется раздельным сжиганием сероводорода (91,77% в сероводородном сбросе), поступающего на вспомогательный факел, и более низкими скоростями выхода сероводорода из устья факельной горелки.

    Несмотря на это, во всех расчетных точках в пределах санитарно-защитной зоны и за ее границами получено существенное снижение концентрации вредных веществ в приземном слое. Новая факельная установка имеет ряд преимуществ, которые заключаются в следующем:

    Благодаря увеличению подъема факельных горелок и сооружению звукоизолирующего кольца снижается до нормативного уровня воздействие шума на поверхности земли при сгорании аварийных сбросов;

    Вследствие использования дополнительного количества

    Таблица 3.21

    Максимальные концентрации вредных веществ в приземном слое

    Горение продувочного газа Горение дежурных горелок
    Углеводороды 0,194 - 0,0022 - *
    Окись углерода 7,5 0,01156 0,087 -
    Диоксид азота 1,16 0,1424 0,013 -
    Диоксид серы 0,84 0,0175 - -
    Сжигание аварийного сброса Сжигание аварийного сброса
    Углеводороды 34,74 - 34,74 -
    Окись углерода 11388,8 0,0512 1388,8 0,0616
    Диоксид азота 215,8 0,4677 215,8 0,6099
    Диоксид серы 113,33 0,0453 113,33 0,1224

    * расчет не проводился ввиду очень малой концентрации (менее 0,01 ПДК).

    пара увеличивается диапазон бездымного сжигания аварийных сбросов (с 15 до 40 т/ч);

    • - за счет применения эффективных факельных горелок уменьшается количество образующихся вредных веществ (полнота сжигания превышает 99%);
    • - при компьютерном регулировании соотношения горючий газ-пар обеспечивается бездымное сжигание тяжелых углеводородов как в случае периодических, так и аварийных сбросов;
    • - с увеличением высоты факельного ствола и уменьшением сажеобразования уменьшается тепловая нагрузка на поверхность земли;
    • - с помощью отдельного ствола (вспомогательной факельной установки) обеспечивается стабильное (независимое от колебаний расхода углеводородных сбросов) сжигание сероводорода;
    • - благодаря прекращению постоянной подачи топливного газа на продувку и переводу факельной установки в дежурный режим снижается образование вредных веществ более чем в 100 раз и в несколько раз уменьшается световое излучение пламени;
    • - для исключения негативного воздействия факельных газов на окружающую среду используются газо-жидкостные струйные компрессоры нового поколения.
    • Какие тенденции в динамике загрязнения воздушной среды имеются в последние годы?
    • Укажите классификацию мероприятий по снижению выброса в атмосферу вредных веществ?
    • Как снизить потери сероводорода в процессе Клауса?
    • Какие пути снижения оксидов серы являются наиболее рациональными?
    • Какие способы очистки газов от опасных оксидов вам известны?
    • Какие технологические мероприятия надо проводить для уменьшения содержания вредных газов?
    • Как осуществляется очистка газов от твердых примесей?
    • Какие требования предъявляются к существующим химическим способам очистки воздуха?
    • Назовите преимущества и недостатки факельной утилизации газов.
    • Опишите принципиальную схему факельных установок утилизации газовых выбросов.
    • В чем заключаются основные преимущества новых факельных установок?

    Пассивные способы уменьшения загрязнения атмосферы

    Эти способы предназначены для уменьшения вредного воздействия газообразных выбросов на растительный и животный мир. При этом абсолютное количество вредных выбросов не уменьшается, происходит только их разбавление в атмосферном воздухе и снижение опасных концентраций до уровня предельно допустимых.

    Наиболее распространенными пассивными способами уменьшения вредного влияния газообразных выбросов являются следующие.

    Размещение предприятий с учетом розы ветров. Ветер представляет собой движение воздуха относительно земной поверхности, вызванное неравномерным распределением атмосферного давления. Обычно такое движение воздуха направлено от высокого к низкому давлению. Ветер характеризуется скоростью (м/с, км/час) и направлением.

    Проектирование и строительство промышленных предприятий осуществляется с учетом розы ветров. Она представляет собой векторную диаграмму, которая характеризует режим ветра в данном месте по многолетним наблюдениям.

    Учет розы ветров позволяет строить промышленное предприятие так, чтобы его вредные газообразные выбросы уносились ветром в противоположном направлении от города или населенного пункта.

    Создание санитарно-защитных зон в виде лесопосадок и парков. Санитарно-защитные зоны вокруг промышленных предприятий не только способствуют разбавлению вредных газообразных выбросов в воздухе, но и поглощают их.

    Установлено, что 1 гектар леса в возрасте 20 - 30 лет за вегетационный период поглощает листьями 500 - 700 кг диоксида серы, 400 кг серного ангидрида, 180 кг оксидов азота, 100 кг хлора, 40 кг фтора, 20 кг фенола, задерживает до 18 т пыли. Таким образом, благодаря дыханию и автотрофному питанию, растения способны очищать значительный объем воздуха. При этом устойчивые виды растений не погибают, а накапливают и обезвреживают достаточно большое количество токсичных веществ.

    Введение режимных условий работы предприятий. Режимные условия работы промышленных предприятий заключаются в следующем. В ветреную погоду производство работает на полную мощность, а в безветренную мощности производств, в которых образуются вредные выбросы, уменьшают.

    Использование высоких труб. Для рассеивания вредных выбросов на большие площади используют высокие дымовые или выхлопные трубы. Известно, что дымовая труба высотой в 200 метров рассеивает вредные выбросы на площади радиусом в 25 км, тогда как трубы высотой в 250 метров увеличивают радиус площади рассеивания до 75 км.

    В то же время при частом расположении дымовых труб эффект рассеивания не достигается из-за перекрывания площадей рассеивания однотипных вредных выбросов из различных труб, например, диоксида серы в составе дымовых газов в городах Западной Европы.

    Расположение промышленных предприятий с учетом рельефа местности. Обычно промышленные предприятия располагаются на возвышенных местах, а населенные пункты -- в низменных, что позволяет рассеивать вредные газообразные выбросы в высоких слоях атмосферы даже с территории предприятий.

    Активные способы уменьшения загрязнения атмосферы

    Активные способы уменьшения загрязнения атмосферы предназначены для сокращения абсолютных количеств выбросов вредных газообразных веществ в окружающую среду. Наиболее широкое применение находят следующие активные способы:

    Строительство предприятий по проектам, прошедшим экологическую экспертизу;

    Совершенствование уже существующих технологий с повышением их экологической безопасности;

    Строгое соблюдение технологического регламента рабочими и служащими предприятий;

    Повышение экологической безопасности сырья перед его применением.;

    Строительство газоочистных установок для улавливания и последующей утилизации или обезвреживания вредных газообразных выбросов. Однако это не всегда возможно из-за того, что стоимость газоочистных установок порой достигает 70% стоимости самих предприятий;

    Создание малоотходных и безотходных технологий с газооборотным циклом.

    Классификация способов очистки газовых потоков

    По назначению все процессы очистки газовых потоков подразделяются на две группы: технологическую и санитарную.

    Технологическая очистка газов. Целью технологической очистки газовых потоков является получение чистого газообразного сырья для производства товарной продукции.

    Технологическая очистка газовых потоков также находит широкое применение в производстве синтетических каучуков и пластических масс для разделения насыщенных и ненасыщенных углеводородов. Аппараты или установка для технологической очистки газов располагаются в основной технологической линии либо в начале ее, либо в середине.

    Санитарная очистка газов. Она предназначена для уменьшения содержания вредных пылевидных, газообразных и парообразных веществ в газовых потоках, выбрасываемых в атмосферу. Процессы санитарной очистки газовых потоков широко применяются в различных отраслях промышленности и народного хозяйства. Наиболее типичные примеры использования санитарной очистки газов -- это улавливание летучей золы, диоксида серы и оксидов азота из дымовых газов тепловых электростанций, оксидов азота в производстве азотной кислоты, диоксида серы в производстве серной кислоты.

    По принципу действия способы очистки и обезвреживания газовых выбросов от вредных примесей подразделяются на: физические; физико-химические; термические и термокаталитические.

    Эти способы получили широкое распространение во всех отраслях промышленного производства и потребления как при технологической, так и санитарной очистке газов. Поэтому рассмотрим их в отдельности более подробно. (Мухумутдинова А.А.,1998г.)

    К числу факторов, интенсифицирующих процесс горения, относятся:
    1) повышение концентрации реагирующего газа путем обогащения воздуха кислородом;
    2) увеличение реакционной поверхности топлива (путем его измельчения или использования внутренней поверхности);
    3) применение повышенного давления;
    4) увеличение скорости потока реагирующего газа;
    5) организация непрерывного процесса горения.

    С увеличением концентрации кислорода в реагирующем газе уменьшается содержание азота, увеличивается температура и растет скорость реакции. Исходя из этого, необходимо подбирать сочетание вышеуказанных параметров для того, чтобы уменьшать концентрацию NOx в газе. Кроме того, в этом случае можно уменьшить степень подогрева воздуха, что также будет способствовать уменьшению содержания окислов азота в дымовых газах.
    Увлажнение воздуха в слоевых процессах способствует более интенсивному горению, особенно углей с легкоплавкой золой. При «подпаривании» воздуха, обогащенного кислородом, колосники не заливаются шлаком, доступ кислорода не тормозится, чем и обеспечивается хорошая работа топки.

    Большое влияние на характер протекания процесса горения оказывает размер и количество пылевидных частиц, их однородность в смеси. Количество и размер частиц определяют долю радиационной составляющей в общем тепловом потоке горючей смеси, а однородность частиц способствует увеличению скорости их выгорания в топочном объеме. От степени измельчения топлива зависит не только скорость его горения, но и газопроницаемость слоя. Уменьшение размеров кусков в слое топлива приводит к увеличению реакционной поверхности в единице объема, которая, как известно, находится в обратной зависимости от их размера. Уменьшение размера частиц пылевидного топлива сказывается непосредственно на уменьшении времени их сгорания. C другой стороны с увеличением содержания мелочи резко возрастает сопротивление движению газов, возникают застойные зоны горения, ухудшается скорость выгорания топлива. При использовании топлива, содержащего большое количество мелочи, резко возрастает унос, снижающий к.п.д. процесса.

    Немаловажным средством для интенсификации топочных процессов служит повышение давления в реакционной зоне. Оно позволяет увеличить плотность реагирующего газа в единице объема (и количество топлива при сжигании), снизить скорость движения газового потока и тем самым увеличить время контакта между реагирующим топливом и воздухом. Кроме того, появляется возможность уменьшить подсосы воздуха в топочный объем, избежать неравномерности нагрева металла и охлаждения факела. Давление оказывает влияние на скорость протекания химических реакций, но регулировать эту величину следует в пределах, которые обеспечат оптимальное время пребывания газов в реакционной зоне, допустимо высокую температуру факела для получения высокого к.п.д. агрегата и минимальное образование окислов азота.

    При температурах ниже 650С начинается переход окиси азота в двуокись. Согласно нормам ПДК, двуокись азота относится ко второй группе опасности. Поэтому искусственное понижение температуры дымовых газов в результате подсоса воздуха при отрицательном давлении в печи может создать благоприятные условия для образования двуокиси азота.

    Скорость и направление движения газа и воздуха влияет на интенсивность процесса сгорания топлива в потоке. При увеличении скорости потока возрастает количество сжигаемого топлива в единице объема за счет интенсификации процессов массообмена, ликвидируются застойные зоны при слоевом горении топлива, увеличивается скорость отвода дымовых газов, интенсифицируются процессы горения. Возрастание скоростей дымовых газов благоприятно сказывается на теплообмене за счет увеличения конвективной составляющей теплового потока.

    Компоновка горелок в топочном объеме определяет общий размер факела, зону горения и степень заполнения дымовыми газами топочного пространства. Встречное, или параллельное движение газов в зависимости от расположения горелок повышает или понижает среднюю температуру газов в факеле и создает определенные условия теплообмена в агрегате. Однако, следует учитывать, что увеличение скорости истечения воздушного потока из горелок интенсифицирует смешение топлива с воздухом, особенно на начальном участке факела, что способствует образованию окислов азота. Поэтому необходимо подбирать такие скорости, которые определяют температуру и длину факела, способствующие равномерному теплообмену и минимальному образованию окислов азота в тепловом агрегате.

    Принципиально существует несколько подходов к решению проблемы ограничения вредных выбросов в атмосферу с дымовыми газами ТЭС:

    Рассеивание вредных выбросов с помощью высотных дымовых труб на большой площади;

    Непосредственное воздействие на механизм образований вредных примесей при горении топлив;

    Очистка продуктов сгорания топлив от вредных примесей;

    Удаление вредных компонентов из топлива до его сжигания. Специалисты в области теплоэнергетики должны уметь правильно выбирать оборудование и оптимальные режимы эксплуатации котлов, обеспечивающие снижение до минимума вредных выбросов в окружающую среду, в зависимости от вида сжигаемого топлива, рельефа местности и других факторов.

    1.1. Высотные дымовые трубы

    Хотя тепловые электростанции являются одним из наиболее крупных источников вредных выбросов в атмосферу, их участие в формировании общего фона загазованности в приземном слое воздуха отнюдь не находится в прямой зависимости от массы этих выбросов. Связано это с тем, что в отличие от других источников вредных выбросов (автотранспорта, промышленных предприятий) на ТЭС дымовые газы рассеиваются в атмосфере на высоте несколько сотен метров, благодаря чему достигают поверхности земли, разбавленные воздухом в сотни и тысячи раз. Основной задачей рассевания вредных веществ в атмосфере являются снижение их концентраций до такого уровня, когда они становятся безопасными для живой природы. Для этого на ТЭС используются дымовые трубы, высота которых (по мере укрупнения электростанций и ухудшения качества топлив) постоянно увеличивалась. В настоящее время используются трубы высотой 180, 250, 320 – 360 и 420 м.

    Современные высотные дымовые трубы выполняются в виде моно­литных железобетонных стволов, выдерживающих высокие ветровые и весовые нагрузки. С целью предохранения железобетона от воздействия сернистых соединений, влаги и повышенной температуры дымовых газов в трубах выполняется защитная внутренняя оболочка из кислотоупорного кирпича. Высотные дымовые трубы являются дорогостоящим элементом ТЭС.

    Концентрация токсичных веществ при увеличении высоты дымовых труб значительно падает в непосредственной близости от электростанции, с увеличением же расстояния относительное снижение концентрации уменьшатся. Для упрощенного определения распределения концентраций вредных примесей на уровне земли при их рассеивании с помощью дымовых труб используется следующая формула :

    где М – количество выбросов; и – скорость ветра; Н – эффектив­ная высота трубы; k – коэффициент турбулентной диффузии; х – расстояние от трубы. Наибольшая величина приземной концентрации токсичных веществ С м устанавливается на расстоянии

    (1.2)

    и составляет

    (1.3)

    Однако в реальных условиях задача расчета концентрации токсичных примесей существенно осложняется в связи с необходимостью учиты­вать реальные гидрометеоусловия, неоднородность турбулентной структуры атмосферы, разность температур выбрасываемых газов и окружающего воздуха, условия выходя газов из устья трубы и их оседания на поверхности земли.

    Высота дымовых труб ТЭС должна рассчитываться с учетом рас­сеяния токсичных примесей до норм ПДК. В табл.1.1 приведены рас­четные значения максимальной концентрации NО Х в приземном слое вблизи газомазутных ТЭС мощностью 3600 и 4800 МВт с дымовыми трубами 250 и 320 м при различных скоростях ветра. Данные расче­та показывают, что даже для трубы высотой 320 м в штиль содержа­ние NO Х в приземном слое может превышать ПДК. Еще большее пре­вышение ПДК будет наблюдаться при содержании в уходящих газах ТЭС, кроме NO Х, других вредных веществ, обладающих эффектом суммации.

    Таблица 1.1

    Расчетные концентрации NO X в приземном слое.

    Высота труб, м

    Скорость ветра, м/с

    Концентрация NO X , мг/м 3

    Поэтому высотные дымовые трубы не следует противопоставлять другим способам защиты окружающей среды. Пока будут существовать вредные выбросы (как следствие несовершенной технологии сжигания топлива), дымовые газы необходимо выбрасывать в верхние слои атмосферы, где их вредные компоненты будут обезвреживаться в ходе процессов естественного самоочищения воздушного океана. Высоту дымовых труб ТЭС следует выбирать после того, как использованы все возможности, связанные с уменьшением количества вредных выбросов ТЭС в атмосферу. Для этого существует специальная методика, учитывающая суммарное воздействие вредных веществ фоновую загазованность атмосферы городов и т.д. . С учетом этих факторов определяется предельная мощность тепловой электростанции по условиям защиты биосферы от воздействия вредных газообразных выбросов.



     

    Возможно, будет полезно почитать: